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Introduction

This dissertation is intended to provide an introduction to homotopy type theory

(HoTT) with a view towards doing homotopy theory in this framework. We will

illustrate its use in this context by providing a novel proof in HoTT of a result

with applications in the theory of principal bundles due originally to Daniel Gottlieb

[Got69]. Our version of the theorem takes the form:

Theorem. Let G be a discrete group, X be a 0-connected type, and f : X → K(G, 1)

be a pointed map. Then there is an equivalence

Map(X,K(G, 1); f) ' K(CG(imπ1f), 1)

where Map(X,K(G, 1); f) is the connected component of the mapping space X →
K(G, 1) containing f , CG(S) denotes the centraliser of S ⊆ G, and K(H,n) denotes

an Eilenberg-MacLane space.

Building towards understanding the statement and proof of this theorem is the main

purpose of the dissertation.

Homotopy type theory is a new foundations of mathematics based on Martin-Löf

intensional type theory [ML75]. Our main reference is the Homotopy Type Theory

Book [Uni13], which was the product of numerous authors following the Institute

for Advanced Studies’ Special Year on the Univalent Foundations of Mathematics in

2012-13. One of the main ideas, originally explored by Steve Awodey and Michael

Warren in [AW09], is that intensional type theory can be equipped with a topological

interpretation: types A become spaces and terms a : A become points in those spaces.

Witnesses p : (a =A b) of equality between two points a : A and b : A become paths

from a to b in A. Moreover, witnesses s : (p =(a=Ab) q) to equality between paths

become homotopies or 2-paths, and iterating this idea yields 3-paths, 4-paths, and

so on. These identifications help to resolve the difficulties presented by the complex

structure of equality in intensional type theory. Additional insights which make HoTT
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into a viable place to do mathematics are Voevodsky’s univalence axiom [Voe06], and

the ability to define higher inductive types which turns many objects of study into

native concepts in HoTT.

As a framework, homotopy type theory inherits desirable properties from inten-

sional type theory. In particular, proofs in HoTT are amenable to verification using

proof assistants such as Coq [INR] or AGDA [Nor]. Moreover, it encourages use of

type-theoretic techniques which may lead to a proof taking on a very different flavour

compared to a more classical argument, potentially yielding additional insight into a

problem. One constraint is that, by its nature, all constructions in HoTT must be ho-

motopy invariant. While this means that we must occasionally alter definitions away

from their classical counterparts, it often also means that proofs are not dependent

on concrete realisations, and can be applied in a number of different contexts.

Content Outline In Chapter 1 we provide a brief introduction to Martin-Löf in-

tensional type theory, including many of the basic constructions that we will need.

We then show how the identity types (a =A b) of witnesses to equality endow types

with the structure of a weak ∞-groupoid, facilitating the homotopy interpretation.

The rest of the chapter focusses on presenting the definitions and results that we will

need in the rest of the dissertation, including the univalence axiom.

Chapter 2 follows up by providing various constructions and results from homotopy

theory in HoTT. In particular, these constitute a synthetic approach to homotopy

theory. To illustrate doing homotopy theory in this way, we also spend some time

examining the proof that π1(S1) = Z.

Finally, in Chapter 3 we seek to apply the theory from the preceding chapters to

understand the definition of principal bundles in homotopy type theory and classify

them. We give a presentation of fibre bundles and principal bundles in HoTT, before

proving a series of lemmas which will allow us to prove the main theorem as stated

at the start of this introduction.
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Chapter 1

Homotopy Type Theory

We begin by giving a brief introduction to homotopy type theory, describing the basic

structure of the underlying intensional type theory, before introducing the homotopy

interpretation of identity types and Voevodsky’s univalence axiom. This is intended

to give a broad overview of the theory to readers unfamiliar with (homotopy) type

theory: for a more in-depth review, the Homotopy Type Theory book [Uni13] is the

definitive reference.

1.1 Martin-Löf Intensional Type Theory

Rather than present Martin-Löf type theory [ML75] as a formal type system, we will

take a more intuitive approach. A type can be considered as a collection of terms

or inhabitants. We write a : A to mean that a belongs to A, or that the term a

has type A. However, we note a key distinction between type theory and set theory.

In type theory, the statement a : A is a judgement: being of type A is an inherent

property of the term a, and this is derivable in the type system. While the similar

statement a ∈ A in set theory is a proposition: it has a truth value. The difference

is made clear when working internally. We can write things like ”if a ∈ A, then

b ∈ B” as expressions within set theory, but in type theory there is no expression

corresponding to ”if a : A then b : B”. Nor can we try to prove or disprove a : A. A

typing judgement is just something that holds in theory or doesn’t.

This distinction between judgements and propositions crops up again when we look

at equality between terms. In particular this is an intensional type theory where we

have both judgemental equality, written a ≡ b, and propositional equality,

”a = b”. Judgemental equality says that two terms are equal by definition, and

indeed we will use that notation when defining certain terms. If a : A and a ≡ b hold
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in the type theory, then it is immediate that b : A. If a, b both belong to the same

type A, then the question of propositional equality between a and b manifests itself

as a type a =A b. If this type has an inhabitant, then a and b are propositionally

equal, otherwise they are not. Proving that a : A and b : A are propositionally equal

is therefore equivalent to providing an element of a =A b. Note that if terms a : A and

b : B don’t belong to the same type then they can’t be equal (in either sense). From

now on we will say ”equal” to mean propositionally equal, and ”equal by definition”

(or something similarly qualified) to mean judgementally equal.

This idea of a type A representing a proposition and an inhabitant a : A represent-

ing a proof, or witness to the truth of that proposition, can be applied more generally.

The constructions we introduce in this section will allow us to perform logical oper-

ations within this propositions-as-types interpretation, which we shall mention as

we introduce them.

Types may belong to other types. In particular, we have a universe of types U
whose inhabitants are ”all types”. For the theory to be consistent, U can’t contain

itself, so behind the scenes there is a cumulative hierarchy of universes U0 : U1 : U2 : ...,

and for our purposes we let U be the Ui which contains all the types we need.

We will now consider several type constructors.

1.1.1 Function Types

Non-Dependent Functions Given types A and B, we can form the type A→ B

of (non-dependent) functions, or maps, from A to B. In set theory a function is a

certain kind of relation. However, in type theory they are a primitive concept. We

can introduce a function by giving it a name, f say, and then defining f : A → B

with an equation

f(x) :≡ Φ

where Φ is some expression possibly containing the variable x. Alternatively we can

avoid having to give a function a name by using λ notation

(λ(x : A).Φ).

In either case, we compute the value of the function at some a : A via substitution

f(a) ≡ (λ(x : A).Φ)(a) ≡ Φ[a/x]
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where Φ[a/x] is the expression obtained by replacing all free occurrences of x in Φ

with a. That is, the computation rule is just β-reduction. Clearly such a function is

only well defined if Φ[a/x] : B for all a : A. As in λ-calculus, → binds to the right:

so the type of functions of several variables can be written in the form A→ B → C.

The type theory also has η-reduction, so that f ≡ λx.f(x). We may also use other

common notations for functions like x 7→ Φ. The logical interpretation of A→ B in

the propositions-as-types interpretation is ”A implies B”.

Dependent Functions Martin-Löf type theory also allows us to define functions

whose codomain can contain inhabitants of multiple different types. Given a type

A : U and a type family B : A → U , we can construct the type of dependent

functions
∏

(x:A)B(x). A dependent function is introduced in much the same way

as a non-dependent function: f :
∏

x:AB(x) is defined via an equation f(x) :≡ Φ and

evaluating at a : A is defined via substitution. The only difference is that for f to be

well-defined, we now require that Φ[a/x] : B(a) for each a : A. Note that if B is a

constant function x 7→ C, then
∏

(x:A) B(x) ≡ (A→ C). The logical interpretation of∏
(x:A)B(x) in the propositions-as-types interpretation is ”for all x : A, B(x) holds”.

1.1.2 Pair Types

Cartesian Product (Non-Dependent Pairs) Given types A and B, we form

their Cartesian product type A×B. Inhabitants of this type are of the form (a, b)

constructed from inhabitants a : A and b : B. The non-dependent elimination rule

(also known as the recursion principle) says that for any function g : A→ B → C,

we can define a function f : A×B → C such that

f((a, b)) :≡ g(a)(b).

In particular, we define the two projection functions

pr1((a, b)) :≡ a

pr2((a, b)) :≡ b.

The dependent elimination rule (the induction principle) says to define a dependent

function f :
∏

x:A×B C(x) we can provide a map g :
∏

(x:A)

∏
(y:B)C((x, y)), and then

f((a, b)) :≡ g(a)(b). The logical interpretation of A× B in the propositions-as-types

interpretation is ”A and B”.
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Dependent Pairs As in the case of functions, we generalise pairs to allow the type

of the second component to vary. Given a type A : U and type family B : A → U ,

we form the type of dependent pairs
∑

(x:A) B(x). Inhabitants are constructed by

pairing a : A with b : B(a). The recursion principle takes a dependent function

g :
∏

(x:A)(B(x)→ C) and provides a function f : (
∑

(x:A) B(x))→ C defined

f((a, b)) :≡ g(a)(b).

The induction principle takes a dependent function g :
∏

(x:A)

∏
(y:B(x))C((x, y)) and

produces a dependent function f :
∏

p:
∑

(x:A)B(x) C(p) with the same defining equa-

tion. In this case we need to use the induction principle to define pr2, since when

(a, b) :
∑

(x:A) B(x), the map (a, b) 7→ b is dependent. The logical interpretation of∑
(x:A) B(x) in the propositions-as-types interpretation is ”there exists x : A such

that B(x) holds”. In the absence of bracketing, both
∏

and
∑

scope over the rest

of a type expression.

1.1.3 Coproduct Types

Given types A and B, we form the coproduct type A + B which can be thought

as the disjoint union of A and B. There are constructors inl : A → A + B (”left

injection”) and inr : B → A + B (”right injection”). The recursion principle takes

functions gl : A→ C and gr : B → C, and provides a function f : A+B → C defined

by cases

f(inl(a)) :≡ gl(a)

f(inr(b)) :≡ gr(b).

The induction principle takes dependent functions gl :
∏

(x:A)C(inl(x)) and gr :∏
(y:B)C(inr(y)), and provides a dependent function f :

∏
(x:A+B) C(x) defined by

the same equations. The logical interpretation of A+B in the propositions-as-types

interpretation is ”A or B”.

1.1.4 Empty and Unit Types

Empty Type The empty type 0 is the type with no inhabitants. It has no

constructors, and always has a unique non-dependent or dependent function from it

to any other type or type family with no defining equations. The logical interpretation

of 0 in the propositions-as-types interpretation is ”false”. We interpret the function

type A→ 0 as ”not A”.
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Unit Type The unit type 1 is the type with a single inhabitant which is given by

the constant constructor ? : 1. Non-dependent functions f : 1 → C and dependent

functions f :
∏

(x:1) C(x) are constructed by providing an inhabitant c : C or c :

C(?). Then f(?) :≡ c. The logical interpretation of 1 in the propositions-as-types

interpretation is ”true”.

1.1.5 Natural Numbers

As a concrete example, we introduce the type of natural numbers N. The con-

structors are

0 : N

succ : N→ N.

The recursion and induction principles are now what we might expect from their

names. The recursion principle takes an inhabitant c0 : C and a function g : N →
C → C and provides a function f : N→ C defined by

f(0) :≡ c0

f(succ(n)) :≡ g(n, f(n)).

Given a type family C : N → U , the induction principle takes c0 : C(0) and a

dependent function g :
∏

(n:N) C(n)→ C(succ(n)) and provides a dependent function

f :
∏

(n:N) C(n) defined by the same equations.

From the natural numbers we can construct other useful types, such as the integers

Z or the real numbers R. We will not provide these constructions, but will later

make use of the integers with functions succ and pred.

1.1.6 Identity Types

We mentioned at the start of this section that the question of whether or not two

inhabitants a, b : A of a type A are equal implicates a type a =A b. This is an

identity type and we have just described its formation rule. The introduction rule

is reflexivity: we know that any two things which are definitionally the same are equal,

yielding a constructor refl :
∏

(x:A) x =A x. In particular, if a ≡ b, then refla : a =A b,

since a =A b is also judgementally equivalent to the type a =A a. The induction rule

for identity types is important for the homotopy interpretation. In fact, we will give

it a name
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Definition 1.1.1 (Path Induction). Suppose we have a family

C :
∏
x,y:A

(x =A y)→ U

and a function

c :
∏
x:A

C(x, x, reflx),

then there is a function

f :
∏
x,y:A

∏
p:x=Ay

C(x, y, p)

such that

f(x, x, reflx) ≡ c(x).

In the propositions-as-types interpretation it says that to prove a property for all

terms x : A, y : A and witnesses to their equality p : x =A y, it suffices to prove that

property when x ≡ y and the witness is reflx. We also note that there is an equivalent

version called based path induction which is the same except that x is fixed.

1.2 The Homotopy Interpretation

To motivate the homotopy interpretation, we first see how types take on the structure

of an ∞-groupoid. Recall that a groupoid is a category in which every morphism

is an isomorphism. Using path induction, we can show that if we take the terms of a

type A as ”objects” and inhabitants of x =A y as the ”morphisms” from object x to

object y, then A has the structure of a groupoid. In particular, given x, y, z : A, we

use path induction to construct functions

(x =A y)→ (y =A z)→ (x =A z)

p 7→ q 7→ p · q

and

(x =A y)→ (y =A x)

p 7→ p−1

such that reflX · reflx ≡ reflx and (reflx)
−1 ≡ reflx, called composition and the

inverse respectively. We still need some coherence conditions: for example, for A

to look like a category, we need composition to be associative. Given p : w =A x,

q : x =A y and r : y =A z, it’s not true in general that p · (q · r) ≡ (p · q) · r.
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However, using path induction again we show that the identity type p · (q · r) =(w=Az)

(p · q) · r is inhabited. Think of this like a ”2-morphism” between the two morphisms.

The other conditions we want (like p · p−1 = reflw) can also be proved using path

induction, so A really does look like a groupoid. In fact, it is a weak groupoid

since the conditions like the associativity of composition are only given up to ”higher

morphisms”. But this weakness gives us additional structure: concatenation and

inverses of 2-morphisms obey coherence conditions given by 3-morphisms, operations

on these obey coherence conditions given by 4-morphisms, which obey coherence

conditions given by 5-morphisms and so on. In this way we see that identity types

have the structure of weak ∞-groupoids.

Another context where∞-groupoids turn up is in the fundamental ∞-groupoid

Π∞X of a topological space X. This has the points of X as objects, paths between

points as the morphisms, homotopies between paths as the 2-morphisms, homotopies

between homotopies as the 3-morphisms and so on. Moreover, the homotopy hypoth-

esis implicates an equivalence of categories Top
Π∞−−→ ∞-Grp via a (bi)adjunction

between Π∞ and the geometric realisation construction. The idea, therefore, is to in-

terpret types with their∞-groupoid structure like topological spaces. Terms x : A be-

come points, witnesses p : x =A y become paths from x to y, witnesses s : p =(x=Ay) q

become homotopies between paths (or 2-paths), and so on. Under this interpretation,

composition can be seen as concatenation of paths and inversion is path reversal.

1.3 Equivalence, Functoriality and Transport

There are several equivalent notions of when two types are equivalent. We shall focus

on the definition via quasi-inverse maps. But first we need the following definition.

Definition 1.3.1. Let f, g be dependent maps of type
∏

x:A P (x) for some type family

P : A→ U . A homotopy between f and g is a dependent map of type

(f ∼ g) :≡
∏
x:A

(f(x) = g(x)).

Definition 1.3.2. Suppose f : A → B is a map of types. A quasi-inverse to f is

a triple (g, α, β) consisting of a map g : B → A and homotopies α : f ◦ g ∼ idB and

β : g ◦ f ∼ idA.
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If f : A → B has a quasi-inverse, we say that f is an equivalence, the types A

and B are equivalent, and write A ' B.

Lemma 1.3.1 (2-out-of-3 rule) ([Uni13] Theorem 4.7.1). Suppose f : A → B

and g : B → C. If any two of f , g and g ◦ f are equivalences, then so is the third.

We now look at how functions act functorially on paths. In particular we have

Lemma 1.3.2 ([Uni13] Lemma 2.2.1). Suppose that f : A → B is a function.

Then for any x, y : A there is a function

apf : (x =A y)→ (f(x) =B f(y))

such that for each x : A, we have apf (reflx) ≡ reflf(x).

Proof. By path induction, defining apf (reflx) :≡ reflf(x).

Moreover, ap behaves functorially.

Lemma 1.3.3 ([Uni13] Lemma 2.2.2). Given functions f : A → B, g : B → C

and paths p : x =A y, q : y =A z, we have

1. apf (p · q) = apf (p) · apf (q)

2. apf (p
−1) = apf (p)

−1

3. apg(apf (p)) = apg◦f (p)

4. apidA(p) = p

The function apf ensures that if (x =A y) is inhabited, then so is (f(x) =B

f(y)). More generally, given any type family B : A → U and dependent function

f :
∏

a:AB(a), we should have that f(x) and f(y) are also equal in some sense.

However, these objects belong to types B(x) and B(y) respectively, which might not

be the same, so it doesn’t make sense to talk about the identity type ”f(x) = f(y)”.

The solution is to make use of a witness path p : (x =A y) and lift this to a path in∑
a:AB(a). We will call this transport and have the following lemmas.

Lemma 1.3.4 ([Uni13] Lemma 2.3.1) - Transport. Suppose that P : A → U is

a type family, and that p : x =A y. Then there is a function p∗ : P (x) → P (y). We

will also write p∗ as transportP (p,−).

Proof. By path induction, defining (reflx)∗ :≡ idP (x) : P (x)→ P (x).
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Lemma 1.3.5 ([Uni13] Lemma 2.3.2) - Path Lifting Property. Suppose P :

A → U is a type family, and u : P (x) for some x : A. Then for any p : x =A y, we

have a path

lift(u, p) : (x, u) = (y, p∗(u))

in
∑

a:A P (a) such that pr1(lift(u, p)) = p.

Proof. By based path induction, with C :
∏

y:A(x =A y)→ U defined C :≡ λyλp.((x, u) =

(y, p∗(u))) and by noticing that C(x, reflx) ≡ ((x, u) = (x, (reflx)∗(u))) ≡ ((x, u) =

(x, u)), which is inhabited by refl(x,u).

At this point it is helpful to recall that a fibration, in the context of topology, is

a continuous map E → B from some total space into a base space which satisfies the

homotopy lifting property. Lemma 1.3.5 gives us a way of lifting paths for all type

families P : A → U , so in fact, we can think of P as a fibration over base space A

with total space
∑

a:A P (a) and fibres given by P (a) for a : A.

We can now give the following version of Lemma 1.3.2 for dependent functions.

Lemma 1.3.6 ([Uni13] Lemma 2.3.4). Suppose f :
∏

a:A P (a). Then there is a

map

apdf :
∏
p:x=y

(p∗(f(x)) =P (y) f(y))

We will also introduce the notation (u =P
p v) :≡ (transportP (p, u) = v), so that the

above can be written apdf :
∏

p:x=y(f(x) =P
p f(y)).

There are some useful additional lemmas about transport which show that it

respects both path and function composition.

Lemma 1.3.7 ([Uni13] Lemma 2.3.9). Given P : A → U with p : x =A y,

q : y =A z, and u : P (x), we have

transportP (q, transportP (p, u)) = transportP (p · q, u)

Lemma 1.3.8 ([Uni13] Lemma 2.3.10). Given f : A→ B and P : B → U along

with some p : x =A y and u : P (f(x)), we have

transportP◦f (p, u) = transportP (apf (p), u)
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1.4 Univalence

In this section we introduce Voevodsky’s univalence axiom, which is part of what

makes the homotopy interpretation so powerful. It’s a form of extensionality principle

for universe types: ”types that behave in the same way (i.e. are equivalent) are equal”.

Note first that if two types are equal in U , then they are equivalent.

Lemma 1.4.1 ([Uni13] Lemma 2.10.1). Given types A,B : U , we have a function

idtoeqv : (A =U B)→ (A ' B)

given by p 7→ transportX 7→X(p,−) ≡ p∗, where X 7→ X denotes the type family

idU : U → U .

Univalence then takes on the following form.

Definition 1.4.1 (Univalence Axiom). Given types A,B : U , the map idtoeqv :

(A =U B)→ (A ' B) is an equivalence with inverse

ua : (A ' B)→ (A =U B)

so that transportX 7→X(ua(f), x) = f(x), and ua(transportX 7→X(p,−)) = p.

An important consequence of univalence is function extensionality.

Theorem 1.4.2 ([Uni13] Theorems 4.9.4 / 4.9.5) - Function Extensionality.

Given two dependent maps f, g of type
∏

x:A P (x) for some type family P : A → U ,

there is an equivalence

(f = g) ' (f ∼ g)

given by quasi-inverse maps happly : (f = g) → (f ∼ g) and funext : (f ∼ g) →
(f = g).

1.5 Homotopy Truncation

As a final preliminary, we introduce the notion of truncation. The idea here is that

given a type A and an integer n ≥ −2, we can kill off all the homotopy structure of

A above level n. Firstly however, we provide a few definitions of what it means to

have no homotopy structure above a given level.
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Definition 1.5.1. A type A is contractible if there is some a : A such that a = x

is inhabited for all x : A. In particular we have an inhabitant of

isContr(A) ≡
∑
a:A

∏
x:A

(a = x).

In this case a is called the centre of contraction.

An immediate consequence of being contractible is the following.

Lemma 1.5.1 ([Uni13] Lemma 3.11.3). A type A is contractible iff A ' 1.

Definition 1.5.2. We define a map is-n-type : U → U for n ≥ −2 by the following

recursion:

is-n-type(A) :≡
{
isContr(A) if n = −2,∏

x,y:A is-m-type(x =A y) if n = m+ 1

If is-n-type(A) is inhabited we say that A is an n-type or n-truncated. In particular,

for n = 0, we say that A is a set, or discrete.

Lemma 1.5.2 ([Uni13] Theorem 7.1.9). Let n ≥ −2, A : U and B : A → U . If

B(a) is an n-type for each a : A, then so is
∏

x:AB(x).

Lemma 1.5.3 ([Uni13] Theorem 7.1.11). Let n-type :≡
∑

A:U is-n-type(A) denote

the type of all n-types. Then n-type is an (n+ 1)-type.

We now introduce the n-truncation of a type A. We won’t provide the explicit

construction since we don’t need it, but will briefly talk about its recursion principle.

Definition 1.5.3. Suppose A is a type, and n ≥ −2. Then there is a type ‖A‖n
called the n-truncation of A, whose inhabitants are generated from those of A via

a map | − |n : A→ ‖A‖n.

Lemma 1.5.4 ([Uni13] Lemma 7.3.1). ‖A‖n is an n-type.

The recursion principle for truncations is particularly useful, and therefore has a

name.

Lemma 1.5.5 ([Uni13] Lemma 7.3.3) - Universal Property of Truncations.

Let n ≥ −2, A : U , and B be an n-type, then we have an equivalence

(‖A‖n → B) ' (A→ B)

given by the map g 7→ g ◦ | − |n.

This says that when we are considering maps into an n-type, we can ignore any

homotopy structure of the domain above the n-th level.
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The (−1)-truncation is also referred to as propositional truncation since ‖A‖−1

has a single inhabitant iff A is inhabited, and is otherwise empty. The 0-truncation

of a type gives its distinct path-connected components. The truncation also allows

us to define the extent to which a type is connected:

Definition 1.5.4. Let n ≥ −2. A type A is n-connected if ‖A‖n is contractible.

Being n-connected is dual in a sense to being an n-type. n-types have no homotopy

structure above level n; n-connected types have no homotopy structure at or below

level n.
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Chapter 2

Synthetic Homotopy Theory

Having introduced the basic ideas of homotopy type theory, we’re finally in a position

to start talking about what it’s good for. We will focus on its application to homotopy

theory. In particular, since objects from homotopy theory like points, spaces (types),

paths and homotopies are ”native” concepts in homotopy type theory, we can apply

a synthetic approach rather than an analytic approach. As an analogy, compare

the synthetic, axiomatic geometry of Euclid to the analytic point-set geometry of

Descartes.

As mentioned in the introduction, there are a number of arguments for why doing

homotopy theory in this synthetic way is a good idea. One of the best is that this

approach suggests new type-theoretic methods for proving theorems. While some

proofs are essentially direct transcriptions of classical proofs, many are much more

computer-science flavoured, using induction-like reasoning. We will see this through-

out the chapter, where we examine some of the different constructions and results of

synthetic homotopy theory.

2.1 Homotopy Groups

We begin with one of the most fundamental constructions, which takes its structure

directly from that of the identity types of a space.

Definition 2.1.1. Given a pointed type (X, x0), its loop space, denoted Ω(X, x0)

is the pointed type (x0 =X x0, reflx0) of loops in X based at x0.

15



We may define the nth-iterated loop spaces inductively.

Ω0(X, x0) :≡ (X, x0)

Ωn+1(X, x0) :≡ Ωn(Ω(X, x0))

Definition 2.1.2. Given a pointed type (X, x0), its nth homotopy group is

πn(X, x0) :≡ ‖Ωn(X, x0)‖0

where the group operation is induced by path composition. For n = 0 we actually

define π0(X) :≡ ‖X‖0 without reference to a basepoint, noting that in this case we

do not generally get any group structure.

In this work we will only really consider discrete groups: i.e a 0-type equipped with

a group operation. These behave exactly as they do in set-theoretic mathematics. As

we’d expect, the n-th homotopy groups for n ≥ 2 are all Abelian, which can be shown

via the Eckmann-Hilton argument.

Theorem 2.1.1 ([Uni13] Theorem 2.1.6) - Eckmann-Hilton. For n ≥ 2, the

composition operator on the n-th loop space is commutative.

The homotopy groups of homotopy type theory enjoy many of the same algebraic

tools as the classically-defined groups. They are functorial: given a pointed map

f : X → Y , there is a path f0 : f(x0) = y0. So we can construct Ωf : ΩX → ΩY as

p 7→ f−1
0 · apf (p) · f0. Truncating this yields a map π1f : π1X → π1Y , and we can

iterate to get maps πkf for all k ≥ 0 (π0f is just the truncation of f). We also have

long exact sequences.

Definition 2.1.3. Given a map f : X → Y and y : Y , the fibre of f at y is the type

fibf (y) :≡
∑
x:X

(f(x) = y).

The image of f is the type

im(f) :≡
∑
y:Y

∑
x:X

(f(x) = y) ≡
∑
y:Y

fibf (y).

If Y is a pointed type with basepoint y0, then the kernel of f is the type

ker(f) :≡
∑
x:X

(f(x) = y0) ≡ fibf (y0).

When X and Y are sets, so too are im(f) and ker(f). In this case we say that a

sequence of maps (fi) is exact precisely when ker(fi) = im(fi−1) as sets for each i.
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Theorem 2.1.2 ([Uni13] Theorem 8.4.6) - Long exact sequence of a fibra-

tion. Let f : X → Y be a basepoint-preserving map between pointed spaces with fibre

F :≡ fibf (y0). Then we have the following long exact sequence

...

πk+1(F ) πk+1(X) πk+1(Y )

πk(F ) πk(X) πk(Y )

π0(F ) π0(X) π0(Y )

The maps on each rows are of the form πkf or πki where i is the inclusion of F into

X. The connecting map π1Y → π0F is |r|0 7→ |(x0, f0 · r)|0.

One use for this is following lemma relating the homotopy groups of a type X and

its loop space ΩX.

Lemma 2.1.3. For any pointed type (X, x0), we have πk(Ω(X, x0)) ' πk+1(X, x0)

Proof. We note that the fibre over x0 of the map pr1 : (
∑

x:X x0 = x)→ X is Ω(X, x0).

But now the type
∑

x:X x0 = x is contractible since, given any (x, p) :
∑

x:X x0 = x,

we have that p : x0 = x and p∗(reflx0) = p, so that (x, p) = (x0, reflx0). Hence, using

Lemma 2.1.2, we obtain a long exact sequence of the form:

...

πk+1(ΩX) 1 πk+1(X)

πk(ΩX) 1 πk(X)

π0(ΩX) 1 π0(X)

from which we immediately see that πk(ΩX) ' πk+1(X).
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Loop spaces also play nicely with truncations:

Lemma 2.1.4 ([Uni13] Corollary 7.3.13). Let n ≥ −2 and (X, x0) be a pointed

type. Then

‖Ω(X, x0)‖n = Ω(‖(X, x0)‖n+1)

2.2 The Circle: S1

In this section we will define the circle type S1 as a higher inductive type (HIT)

and examine its homotopy structure. Higher inductive types turn up in a number of

places later on and essentially give a schema for defining types. In the same way that

we introduced the basic type formers of Martin-Löf type theory in Section 1.1, a HIT

is defined by constructors and elimination rules. One difference, and the reason for

the appearance of the word ”higher”, is that the constructors are not constrained to

generate points of the type. They may also generate paths between points and higher

paths.

Definition 2.2.1. The circle S1 is defined as the higher inductive type generated by

• A point base : S1

• A path loop : base =S1 base

as illustrated in Figure 2.2, with induction principle:

Given P : S1 → U , b : P (base) and ` : b =P
loop b, there is some f :

∏
x:S1 P (x) with

f(base) ≡ b and apdf (loop) = `.

from which we can derive the recursion principle:

Given B with b : B and ` : b = b, we have f : S1 → B with f(base) ≡ b and

apf (loop) = `.

Homotopy groups Following the exposition in [Uni13] Section 8.1, we will prove

that the fundamental group π1(S1) = Z, and that the higher homotopy groups πn(S1)

are trivial for n ≥ 2. Recalling the definition

πn(A, a) :≡ ‖Ωn(A, a)‖0

we see that we will obtain both results by showing that Ω(S1) = Z, since then Ω(S1)

is a set, so not only are all higher loop spaces are trivial, but also ‖Z‖0 = Z. We start

by imitating the classical proof, but then present a more type-theoretic encode-decode

style proof.
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loopbase

Figure 2.1: S1 as a higher inductive type generated by a single point and a path from
that point to itself.

Classical proof A ’classical’ homotopy-theoretic proof might go as follows:

Consider the winding map w : R→ S1 given by w(t) := e2πit. We can show that

this is a fibration of R over S1. In fact, this is the universal cover of the circle.

Similarly, if PbaseS1 is the space of based paths in S1, then the map e : PbaseS1 → S1

which sends a path p to its endpoint is a fibration of PbaseS1 over S1. We observe

that R ' PbaseS1 since both are contractible (we can retract any path along itself

to the constant path at base). But now we make use of the fact that a map of

fibrations is a homotopy equivalence iff it’s a fibre-homotopy equivalence. Hence

we see that, in particular, the fibres of the two fibrations over base are homotopy

equivalent: Z = w−1(base) ' e−1(base) = Ω(S1).

To see how this proof might be translated into our framework, recall that in

Section 1.3 we saw how we could interpret a type family P : B → U as a fibration.

Translating the path fibration e : PbaseS1 → S1 in the above proof gives the family

λ(x : S1).(base =S1 x). Translating the winding map is a little more involved. The

key thing to observe is that marching anticlockwise round the circle once is the same

as adding 1 in the stalk. In this vein, we note that succ : Z → Z is an equivalence.

Hence, by univalence, there is a path ua(succ) : Z =U Z in U . By the recursion

principle for S1 there is a function code : S1 → U such that code(base) ≡ Z, and

apcode(loop) = ua(succ). Now we see that
∑

x:S1 code(x) behaves like the universal

cover, in that the fibre over base is Z, and traversing the circle yields the successor
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...

base

code(base) ≡ Z

∑
x:S1 code(x)

loop

Figure 2.2: Universal cover of S1. Transporting a trip round loop into the cover takes
you to the successor in the fibre.

in the fibre.

transportcode(loop, x) = transportA 7→A(apcode(loop), x) (by Lemma 1.3.8)

= transportA 7→A(ua(succ), x) (by definition of code)

= idtoeqv(ua(succ))(x) (by definition of idtoeqv)

= succ(x) (by univalence)

= x+ 1

Similarly, we have that transportcode(loop−1,−) = pred. So code is the appropriate

translation of the universal cover. See Figure 2.2 for an illustration.

Equipped with our type-theoretic versions of the universal cover and path fibration,

we define a map f :
∏

x:S1(base =S1 x)→ code(x) as

fx(p) :≡ transportcode(p, 0)

To complete the proof we’d want to show that this function induces an equivalence

on the total spaces,
∑

x:S1(base =S1 x) and
∑

x:S1 code(x), since these are both con-

tractible, and that therefore f is an equivalence on each fibre. In particular, that

f(base,−) is an equivalence (base =S1 base) ' code(base) (≡ Z).

While there are ways to carry out the proofs indicated above, but instead we will

look at the more type-theoretic encode-decode argument.

Encode-decode proof This proof, due to Daniel Licata and Mike Shulman [LS13],

again makes use of the function f :
∏

x:S1(base =S1 x) → code(x) we defined in the

20



previous section, but now we will call it encode. Recall therefore the definition

encodex(p) :≡ transportcode(p, 0)

We see that since transport is functorial, if p is of the form (loop · loop−1 · loop · ...),
then transportcode(p,−) will act as a composition of the form (succ◦pred◦ succ◦ ...).
So in fact encodebase computes the winding number of a path from base to base.

The difference with this proof compared to the classical one is that, instead of

trying to show the types
∑

x:S1(base =S1 x) and
∑

x:S1 code(x) are contractible, we

will instead set up an explicit quasi-inverse to encode. With that in mind, let’s define

a function loop− : Z→ (base =S1 base) as follows

loopn =



n︷ ︸︸ ︷
loop · loop · ... · loop if n > 0,

loop−1 · loop−1 · ... · loop−1︸ ︷︷ ︸
−n

if n < 0,

reflbase if n = 0.

We now define our inverse map decode :
∏

x:S1 code(x) → (base =S1 x) by the in-

duction principle for S1. Recall that the induction principle for S1 with P (x) :≡
code(x)→ (base =S1 x) requires b : P (base) and ` : b =P

loop b (≡ transportP (loop, b)).

We let b :≡ loop− and give ` as the path defined by the following sequence of equations

(see [Uni13] Section 8.1.4 for details):

transportx 7→code(x)→(base=x)(loop, loop−)

= transportx 7→(base=x)(loop,−) ◦ loop− ◦ transportcode(loop−1−)

= (− · loop) ◦ loop− ◦ transportcode(loop−1,−)

= (− · loop) ◦ loop− ◦ pred

= (n 7→ loopn−1 · loop)

= (n 7→ loopn)

≡ loop−

Lemma 2.2.1. Given x : S1 and p : base =S1 x, we have decodex(encodex(p)) = p.

Proof. By path induction it suffices to show that decodebase(encodebase(reflbase)) =

reflbase. But encodebase(reflbase) ≡ transportcode(reflbase, 0) ≡ 0 and decodebase(0) ≡
loop0 ≡ reflbase.

Lemma 2.2.2. Given x : S1 and c : code(x), we have that encodex(decodex(c)) = c.
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Proof. By circle induction this reduces to showing that encodebase(loop
n) = n for

each n : N, which we do by induction over N. In the base case, we saw in the proof

of Lemma 2.2.1 that encodebase(loop
0) ≡ encodebase(reflbase) ≡ 0. For the induction

step we see that encodebase(loop
n+1) = encodebase(loop

n · loop) = transportcode(loopn ·
loop, 0) = transportcode(loop, transportcode(loopn, 0)) = succ(transportcode(loopn, 0))

which equals succ(n) by the induction hypothesis.

Now we are done, since Lemmas 2.2.1 and 2.2.2 show that encodex and decodex

are quasi-inverse for each x : S1. In particular, the case for the fibres over x ≡ base

yields an equivalence Ω(S1) ' Z, as desired.

2.3 Suspensions

Having looked at the circle, we would like to define higher-dimensional spheres. How-

ever, rather than defining Sn for each n individually, we construct them inductively

from S1. The construction we need is the suspension ΣA of a space A. In the classical

setting, we usually define ΣA by taking a product of A with the unit interval I and

shrinking the copies of A at the endpoints down to points. But the ability to specify

path constructors for HITs suggests the following definition.

Definition 2.3.1. Given a type A, the suspension ΣA of A is the higher inductive

type generated by

• A point N : ΣA

• A point S : ΣA

• A function merid : A→ (N =ΣA S)

with induction principle:

Given P : ΣA → U , n : P (N), s : P (S) and m : A → (n =P
merid s), there is a

function f :
∏

x:ΣA P (x) such that f(N) = n, f(S) = s and apdf (merid(a)) =

m(a) for all a : A.

and recursion principle:

Given a type B with n, s : B and m : A → (n =B s), there is a function

f : ΣA → B such that f(N) = n, f(S) = s and apf (merid(a)) = m(a) for all

a : A.
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The names and types of the constructors should suggest defining the 2-sphere as

ΣS1, with north pole N , south pole S, and an S1-indexed family of meridian curves

between the poles as in Figure 2.3. In fact, we define all n-spheres in this way.

Definition 2.3.2. For n ≥ 2 the n-sphere Sn is ΣnS1.

S1

N

S

Figure 2.3: Diagram showing S2 as the suspension ΣS1 with an S1-indexed family of
meridian paths.

Using the recursion principle, we see that Σ acts as a functor. In the context of

pointed types, it is left adjoint to Ω.

Definition 2.3.3. Given types X and Y , we will use the notation Map(X, Y ) to

refer to the type X → Y . If X and Y are pointed, by x0 and y0 say, we define the

type of pointed maps between X and Y as

Map∗(X, Y ) :≡
∑

f :Map(X,Y )

f(x0) = y0.

Lemma 2.3.1 ([Uni13] Lemma 6.5.4) - Suspension-loop space adjunction.

Given pointed types A and B we have

Map∗(ΣA,B) 'Map∗(A,ΩB)

2.4 Wedge Sums and Smash Products

The Σ a Ω adjunction is in fact a special case of a more general adjunction which

expresses a form of currying. But we will need a few definitions, beginning with the

following definition of pushouts in homotopy type theory.

Definition 2.4.1. Given maps f : A→ B and g : A→ C, the pushout of f and g

is the higher inductive type B tA C generated by
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• A function inl : B → B tA C

• A function inr : C → B tA C

• A function glue : A→ (inl(f(a)) = inr(g(a))

expressing the commutative diagram:

A C

B B tA C

g

f inr

inl

with recursion principle:

Given type D, maps l : B → D, r : C → D, and g :
∏

a:A(l(f(a)) = r(g(a)), there

is a map s : B tA C → D such that s ◦ inl = l, s ◦ inr = r and aps ◦ glue = g.

As an example, we see that the suspension ΣA is the pushout of 1 ← A → 1. We

also have the following types expressed as pushouts.

Definition 2.4.2. Given two pointed types (A, a0) and (B, b0), the wedge sum

A ∨B is the pushout of

A
a0←− 1

b0−→ B.

Define the inclusion map i∨A,B : A ∨ B → A × B using the recursion principle for

pushouts with l(a) :≡ (a, b0), r(b) :≡ (a0, b), and g(?) :≡ refl(a0,b0). Then the smash

product A ∧B is the pushout of

1← A ∨B
i∨A,B−−→ A×B.

The wedge sum can be viewed as the space obtained by gluing together the two

spaces at their basepoint. As an example, Figure 2.4 shows a wedge sum of the

2-sphere and the circle.

The smash product can be thought of as the usual Cartesian product of two spaces

where a copy of their wedge sum has been shrunk to a point. It has the structure of

a symmetric monoidal product (see Guillaume Brunerie’s thesis [Bru16] for details).

Moreover, much like the symmetric monoidal tensor product in the context of rings,

it exposes a currying adjunction as expressed in the following result (see Andreas

Franz’s masters thesis [Fra17] for a proof).
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inl(S) inl(N) = inr(base)

Figure 2.4: Illustration of the wedge sum (S2, N) ∨ (S1, base).

Lemma 2.4.1 ([Fra17] Proposition 6.7). If (X, x0), (Y, y0), (Z, z0) are pointed

types, then we have an equivalence

Map∗(X,Map∗(Y, Z)) 'Map∗(X ∧ Y, Z)

We defined higher-dimensional spheres as suspensions of S1, but had we defined

spheres independently, it turns out that we can form suspensions by taking the smash

product with them. In particular, we have the following result given by Brunerie.

Lemma 2.4.2 ([Bru16] Proposition 4.2.1). Given any pointed type (X, x0), we

have an equivalence

S1 ∧X ' ΣX

Corollary 2.4.2.1. Given any pointed type (X, x0) and n : N, we have

Sn ∧X ' ΣnX

Proof. Immediate by induction on n.

Using this we can immediately see that the Σ a Ω adjunction (Lemma 2.3.1) is a

special case of Lemma 2.4.1.

2.5 Eilenberg-MacLane Spaces

Recall that in classical homotopy theory a topological space X is an Eilenberg-

MacLane space if exactly one of its homotopy groups is non-trivial. In particular,

given n ∈ N and a group G (necessarily Abelian if n ≥ 2), then X is an Eilenberg-

MacLane space of type K(G, n) if πn(X) = G and πi(X) = 1 for all 0 < i 6= n. Such

spaces exist as CW-complexes for all n and G. Moreover, this space of type K(G, n)

is unique up to weak homotopy equivalence.
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Daniel Licata and Eric Finster have given [LF14] the following construction of

Eilenberg-MacLane spaces in homotopy type theory as higher inductive types.

Definition 2.5.1. Given a group G with identity element e and group operation �,

K(G, 1) is defined to be the higher inductive type with the following constructors:

• A witness θK(G,1) : is-1-type(K(G, 1))

• A point base : K(G, 1)

• A function loop : G→ (base =K(G,1) base)

• A function loop-ident : loop(e) = reflbase

• A function loop-comp :
∏

x,y:G loop(x� y) = loop(x) · loop(y)

with recursion principle:

Given a point c : C, a function l : G → (c =C c), paths pe : l(e) = reflc and

px,y : l(x� y) = l(x) · l(y) for each x, y : G, and a witness θ : is-1-type(C), there

is a function f : K(G, 1)→ C such that f(base) ≡ c and apf (loop(x)) = l(x) for

all x : G. I.e. there is a function

recG :
∏
C:U

∏
c:C

∏
l:G→(c=c)

(l(e) =C reflc)→

(∏
x,y:G

(l(x� y) =C l(x) · l(y))

)
→ is-1-type(C)→ (K(G, 1)→ C)

Given n ≥ 2, the type K(G, n) is defined

K(G, n) :≡
∥∥Σn−1K(G, 1)

∥∥
n

.

They prove that the type K(G, n) defined above has the desired property that

πn(X) ∼= G and πi(X) = 1 for all 0 < i 6= n. In particular, for the case n = 1,

they show that loop is an equivalence.
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In fact, any (n − 1)-connected type with these properties is equivalent to an

Eilenberg-MacLane space, as proved by Floris van Doorn in his thesis [Doo18].

Lemma 2.5.1 ([Doo18] Theorem 4.2.4) - Uniqueness of Eilenberg-MacLane

spaces. Suppose (X, x0) is a (n − 1)-connected pointed n-type such that for some

group G and n : N, πn(X, x0) ∼= G and πi(X, x0) = 1 for all 0 < i 6= n. Then there is

an equivalence X ' K(G, n).

From this, and Lemma 2.1.3, we obtain

Corollary 2.5.1.1. ΩK(G, n+ 1) ' K(G, n)

Example 2.5.1. We saw in Section 2.2 that S1 is a type with π1(S1) = Z and πi(S1) =

1 for all i > 1. Moreover, S1 is 0-connected, so by Lemma 2.5.1, S1 ' K(Z, 1).
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Chapter 3

Classification of Bundles

In this chapter we illustrate doing synthetic homotopy theory by introducing fibre

bundles and principal bundles in homotopy type theory, before proving a series of

results leading to the main theorem.

3.1 Fibre Bundles and Principal Bundles

We follow the presentation of fibre bundles given by Felix Wellen in [Wel17, Wel18].

He presents bundles from two viewpoints: as maps p : E → X from a total space to

a base space; as well as a dependent version as families of types E : X → U .

Definition 3.1.1. Suppose p : E → X is a map of types. A map w : W → X

trivialises p if w is surjective (
∏

x:X ‖fibw(x)‖−1 is inhabited), and there is a pullback

square

W × F E

W X

pr1 p

w

for some type F . In this case we say that p : E → X is an F -fibre bundle.

The idea here is that w : W → X represents an open cover of X. Then on any

one part of the cover, the bundle looks like a product space. That is, a bundle locally

looks like a product space, but may differ on a global level. Alternatively, from the

dependent viewpoint we have

Definition 3.1.2. A map E : X → U is trivialised by a surjective map w : W → X

if for each x : W we have

E(w(x)) ' F

for some type F . We say that E : X → U is an F -fibre bundle.
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base

S1 × S1

Figure 3.1: The torus: AKA the trivial S1-fibre bundle over S1.

Lemma 3.1.1 [Wel18] Theorem 4.10. The above definitions are equivalent via the

correspondence

(p : E → X) 7→ (fibp(x) : X → U)

(E : X → U) 7→ (pr1 : (
∑
x:X

E(x))→ X).

The trivialisation condition also turns out to be equivalent to the condition that∏
x:X ‖E(x) ' F‖−1 is inhabited.

Let’s consider some examples from mathematics.

Example 3.1.1. Given X and F , the trivial F -fibre bundle over X is given by

pr1 : X × F → X. It is easily seen to be trivialised by the map idX : X → X. For

example, the torus S1 × S1, shown in Figure 3.1, is the trivial S1-fibre bundle over

S1.

Example 3.1.2. As a non-trivial example we consider the Klein bottle as illus-

trated in Figure 3.1. Define a map rev : S1 → S1 such that rev(base) ≡ base and

aprev(loop) = loop−1 by circle induction. The map rev is clearly an equivalence (being

quasi-inverse to itself). Hence we can define a map

codeK : S1 → U

such that codeK(base) ≡ S1 and apcodeK (loop) = ua(rev) by circle induction again.

We call the total space
∑

x:S1 codeK(x) the Klein bottle, and we claim that codeK

expresses it as an S1-fibre bundle over S1: locally it looks like the torus S1 × S1, but

globally it’s different. A rough sketch of how the trivialising pullback square might

look is shown in Figure 3.3. There we split the circle into two halves, each equivalent

to the interval (itself equivalent to the unit type, being contractible). This induces a

split in the Klein bottle into two cylinders, which are the product of the circle with

the intervals.
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Figure 3.2: Left: An illustration of the Klein bottle immersed in R3. Right: Shown
diagrammatically as a quotient of the square.

Figure 3.3: Trivialising pullback square for the Klein bottle.

Example 3.1.3. A covering space is a fibre bundle with discrete fibres. For example

we expressed the universal cover of S1 as a map code : S1 → U with fibre Z. This is

a Z-fibre bundle over S1.

Definition 3.1.3. Given two bundles p1 : E → X and p2 : D → X, a map f : E → D

is a bundle morphism if p1 = p2 ◦ f . That is f preserves the fibres. It is a bundle

isomorphism if there is a map g : D → E in the other direction which is also a

bundle morphism.

Before presenting the classification of fibre bundles by pullbacks and principal

bundles, we will need some terminology from work by Ulrik Buchholtz, Floris van

Doorn and Egbert Rijke on higher groups and group actions [BvDR18]. We will be

focussing on the case of discrete groups (i.e. 0-types) where the definition of a group

and of homomorphisms are familiar. But it is worth mentioning that much of the
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following applies to groups with more homotopy structure and an interested reader

should look at the original work for those definitions.

Definition 3.1.4. Given a groupG, its delooping (BG, base) is a pointed, connected

type such that Ω(BG, base) ' G.

Note that if G is a discrete group, then by uniqueness of Eilenberg-MacLane spaces

(Lemma 2.5.1) we have that BG ' K(G, 1).

Definition 3.1.5. Given a : A, the automorphism group of a is

Aut(a) :≡ a =A a.

It has a delooping

BAut(a) :≡
∑
x:A

‖a = x‖−1

with basepoint (a, |refla|).

Definition 3.1.6. A group action of G on a : A is a pointed map ac : (BG, base)→
(A, a).

A group action is equivalently a group homomorphism G → Aut(a). However

since we have not introduced the definition of a homomorphism in this context, we

will just note that it corresponds to our usual notion when G is discrete.

Definition 3.1.7. If ac is a G-action on a type A : U , then we can talk about its

homotopy quotient:

ac//G :≡
∑
z:BG

ac(z).

Returning to the theory of fibre bundles, we introduce the following universal F -

fibre bundle. It is universal in the sense that all other F -fibre bundles will turn out

to be pullbacks of this one.

Definition 3.1.8. Let Aut(F ) act on F : U via (F ′, |ψ|) 7→ F ′, and denote the

homotopy quotient
∑

(F ′,|ψ|):BAut(F ) F
′ by F//Aut(F ). Then the map

pr1 : F//Aut(F )→ BAut(F )

is called the universal F -fibre bundle.
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Lemma 3.1.2 ([Wel17] Theorem 4.3.8). A map p : E → X is an F -fibre bundle

iff there is a map χ : B → BAut(F ) such that there is a pullback square

E F//Aut(F )

X BAut(F )

p pr1

χ

In this case, χ is called the classifying map of p.

We use this idea of producing bundles as pullbacks of a universal bundle to define

principal bundles.

Definition 3.1.9. Let Aut(F ) act on Aut(F ) via (F ′, |ψ|) 7→ (F = F ′), and denote

the homotopy quotient
∑

(F ′,|ψ|):BAut(F )(F = F ′) by EAut(F ). Then the map

π :≡ pr1 : EAut(F )→ BAut(F )

is called the universal principal Aut(F )-bundle.

Note that EAut(F ) is clearly contractible, so we could instead have defined this

as the map ? 7→ (F, |reflF |). However, in the form presented above it is easier to

check (as in [Wel17]) that this map is in fact surjective and an Aut(F )-fibre bundle.

We now reach the final definition we want.

Definition 3.1.10. A map p : E → X is a principal Aut(F )-bundle if there is a

pullback square

E EAut(F )

X BAut(F )

p π

χ

for some classifying map χ : X → BAut(F ). Principal bundle (iso)morphisms are

defined as before.

Principal Aut(F )-bundles come equipped with an Aut(F ) action on the total space

E which is free and transitive on the fibres. However it is beyond the scope of this

work to see how to pull this action out from Definition 3.1.10. The following examples

may give some insight though.

Example 3.1.4. Recall that a covering space E : X → 1-type is regular if the

action of group of deck transformations deck(E) on
∑

x:X E(x) is transitive (it is

always free). These are principal deck(E)-bundles.
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Example 3.1.5. Ulrik Buchholtz and Egbert Rijke constructed the real projective

spaces RP n in homotopy type theory [BR17]. They also show that for each n there

is a principal Z2-bundle Sn → RP n.

Wellen notes in particular that any principal Aut(F )-bundle p is automatically a

surjective Aut(F )-fibre bundle.

Lemma 3.1.3. If p : E → X and p′ : E ′ → X are both pullbacks of a map χ : X →
BAut(F ) along π, then they are isomorphic as bundles.

Proof. By the universal property of pullbacks we obtain maps f : E → E ′ and

g : E ′ → E such that p′ ◦ f = p and p ◦ g = p′. Therefore f and g are bundle

morphisms and the two bundles are isomorphic.

We would also like isomorphic principal bundles to have equal classifying maps.

This may be the case, but here only give a proof of a ”propositional homotopy”

between the two maps.

Lemma 3.1.4. Suppose (E, p, χ, φ) and (E ′, p′, χ′, φ′) are isomorphic principal Aut(F )-

bundles over X. Then
∏

x:X ‖χ(x) = χ′(x)‖−1 is inhabited.

Proof. Bundle isomorphism means there are maps f : E → E ′ and g : E ′ → E such

that p′ ◦ f = p and p ◦ g = p′. Moreover, since EAut(F ) is contractible, so are the

types E → EAut(F ) and E ′ → EAut(F ) by Lemma 1.5.2. Putting this together

yields the following commutative diagram

E ′

E EAut(F )

X BAut(F )

p′

g

p

f

π

χ

χ′

In particular, χ ◦ p = χ′ ◦ p with witness ψ say. Now, as pointed out by Wellen, p

is surjective, meaning in this case that
∏

x:X ‖fibp(x)‖−1 is inhabited. By the uni-

versal property of truncations (Lemma 1.5.5), for each x : X, the map ((e, pe) 7→
|happly(ψ, e)|−1) : fibp(x) → ‖χ(x) = χ′(x)‖−1 extends to a map ‖fibp(x)‖−1 →
‖χ(x) = χ′(x)‖−1. Therefore we can construct an inhabitant of

∏
x:X ‖χ(x) = χ′(x)‖−1.

In the case where X is a set, we can apply a version of the axiom of choice

which exists in homotopy type theory to obtain a proper homotopy, and hence an

equality χ = χ′. However, this is not a restriction we are willing to put on X.
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In any case, we see that understanding the function type X → BAut(F ) is key to

describing the principal Aut(F )-bundles we might get over the base space X.

3.2 Maps Between Eilenberg-MacLane Spaces

Recall that in the case where Aut(F ) ' G for some discrete group G, we have that

BAut(F ) is simply K(G, 1). We therefore want to consider maps into K(G, 1), but its

recursion principle only specifies how to construct maps out of it. However, looking

at maps between Eilenberg-MacLane spaces gives a very useful lemma. The following

proof by induction is outlined by Mike Shulman on the Homotopy Type Theory blog,

but we will provide a more detailed account in the base case.

Lemma 3.2.1 [Shu14]. Given n : N as well as discrete groups G and H, we have that

Map∗(K(G, n), K(H,n)) ' Hom(G,H), the type of group homomorphisms G→ H.

Proof. We proceed by induction on n ≥ 1.

Base Case n = 1 We will set up explicit maps between Map∗(K(G, 1), K(H, 1))

and Hom(G,H) and show that they are quasi-inverse.

To define our function F : Hom(G,H) → Map∗(K(G, 1), K(H, 1)) we recall the

recursion principle for K(G, 1) given in Definition 2.5.1: There is a function

recG :
∏
C:U

∏
c:C

∏
l:G→(c=c)

(l(e) =C reflc)→

(∏
x,y:G

(l(x� y) =C l(x) · l(y))

)
→ is-1-type(C)→ (K(G, 1)→ C)

such that if f ≡ recG(C, c, l, pe, (x, y 7→ px,y), θ,−), then f(base) ≡ c and apf (loop(x)) =

l(x) for each x : G. Given a group homomorphism φ : Hom(G,H), we therefore define

F (φ) :≡ recG(K(H, 1), baseK(H,1), loopK(H,1) ◦ φ, loop-identK(H,1),

loop-compK(H,1), θK(G,1), −)

noting that loop-identK(H,1) and loop-compK(H,1) give the right paths since φ is a

homomorphism and H is a set.
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To define our function G : Map∗(K(G, 1), K(H, 1)) → Hom(G,H) we will make

use of an encode style argument. First note that if x : H then since group el-

ements are invertible, the function fx : h 7→ x � h is an equivalence H ' H.

Therefore, by univalence constrained to the universe 0-type, there is a path ua(fx) :

H =0-type H. Since, by 0-type is a 1-type by Lemma 1.5.3, the recursion principle

for Eilenberg-MacLane spaces lets us construct a map code : K(H, 1)→ 0-type such

that code(base) ≡ H and apcode(loop(x)) = ua(fx) for each x : H. We now define

encode :
∏

z:K(H,1)(base =K(H,1) z) → code(z) as encodez(p) :≡ transportcode(p, e).

But now we see that for all x : H

transportcode(loop(x), e) = transportA 7→A(apcode(loop(x)), e) (by Lemma 1.3.8)

= transportA 7→A(ua(fx), e) (by definition of code)

= idtoeqv(ua(fx))(e) (by definition of idtoeqv)

= fx(e) (by univalence)

= x

So in a sense, encodebase : (base =K(H,1) base)→ H actually decodes the group out of

the construction of K(H, 1) (but we call it encode to maintain the parallel with the ex-

ample of computing π1(S1) in Section 2.2). Finally, given σ : Map∗(K(G, 1), K(H, 1)),

we define

G(σ) :≡ encodebase ◦ apσ ◦ loopK(G,1)

That is, given g : G, we first take it to the corresponding loop in K(G, 1), use σ to

map this to a loop in K(H, 1), and then pull out the corresponding element of H.

It’s easy to check that this is a well defined group homomorphism.

It now remains to check that F and G are quasi-inverse. However, we see that

given φ : Hom(G,H), then for each x : G we have

G(F (φ))(x) ≡ encodebase(apF (φ)(loopK(G,1)(x))) (by definition of G)

= encodebase(loopK(H,1)(φ(x))) (by definition of F )

= φ(x) (by the calculation above)

so that by function extensionality we have G(F (φ)) = φ. The other direction is

slightly more tricky. One way of showing it is by making use of the induction principle

for K(G, 1). This says that, given some family C : K(G, 1) → 1-type, along with

c : C(base) and a family of maps p :
∏

x:G c =C
loop(x) c which preserves identity and
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composition, then there is a function f : C with the obvious properties. We define

C :≡ λz.(FGσ(z) = σ(z)) and let c be the path FGσ(base) ≡ base = σ(base) given

by the definition of F and the fact that σ is a pointed map. The subtle bit is noticing

that apC(loop(x)) : ((FGσ(base) = σ(base)) = (FGσ(base) = σ(base))) and so, since

K(H, 1) is a 1-type, we have apC(loop(x)) = reflFGσ(base)=σ(base). Now for each x : G

we can give the path

transportz 7→FGσ(z)=σ(z)(loop(x), c)

= transportA 7→A(apz 7→FGσ(z)=σ(z)(loop(x)), c) (by Lemma 1.3.8)

= transportA 7→A(reflFGσ(base)=σ(base), c) (since K(H, 1) is a 1-type)

= idFGσ(base)=σ(base)(c) (by definition of transport)

= c

This will respect the identity and composition, hence by induction we have f : C ≡∏
z:K(G,1)(FGσ(z) = σ(z)), but now function extensionality therefore gives us that

FG(σ) = σ.

Induction Step By Definition 2.5.1 we have that K(G, n + 1) = ‖ΣK(G, n)‖n+1.

Therefore, since K(H,n+ 1) is an (n+ 1)-type,

Map∗(K(G, n+ 1), K(H,n+ 1)) 'Map∗(ΣK(G, n), K(H,n+ 1))

by the universal property of truncations (Lemma 1.5.5). Now applying the suspension-

loop adjunction (Lemma 2.3.1), we have

Map∗(ΣK(G, n), K(H,n+ 1)) 'Map∗(K(G, n),ΩK(H,n+ 1)).

But now by Corollary 2.5.1.1, ΩK(H,n+ 1) = K(H,n). So by the induction hypoth-

esis, Map∗(K(G, n),ΩK(H,n+ 1)) is Hom(G,H).

Corollary 3.2.1.1.

Map∗(S1,S1) ' Z

Proof. In Example 2.5.1 we saw that S1 is K(Z, 1). Hence, by Lemma 3.2.1 we have

Map∗(S1,S1) ' Hom(Z,Z) ' Z

(since a group homomorphism Z→ Z is determined by where it sends 1).
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3.3 Classifying Principal Bundles of Discrete Groups

We’re now ready to tackle the main theorem. We first note that, as mentioned

in Section 3.1, when G is a discrete group we have that BG ' K(G, 1). Moreover

Aut(base : K(G, 1)) ∼= G. Suppose our base space is X. Then according to Definition

3.1.10, we are therefore interested in maps X → K(G, 1). In particular, we prove a

result corresponding to a classical theorem of Gottlieb. The statement of the original

theorem is

Theorem 3.3.1 ([Got69] Lemma 2). Let X be a connected CW complex, G a

discrete group, and f : X → K(G, 1) be a pointed map. Then π1Map(X,K(G, 1); f)

is isomorphic to CG(imπ1f), where CG(S) is the centraliser of S ⊆ G.

Note in particular, that while f is pointed, the mapping space involved is not. The

idea behind my proof of this in homotopy type theory is based on the classical proof

outlined by Tsutaya in [Tsu15] as Theorem 4.4. He considers the long exact sequence

in homotopy coming from the evaluation map evx0 : Map(X,K(G, 1)) → K(G, 1)

where evx0(g) :≡ g(x0) and x0 is the basepoint ofX preserved by f . Note that the fibre

of this map over base : K(G, 1) is just the type of pointed maps Map∗(X,K(G, 1)).

For this proof we will require two lemmas:

Lemma 3.3.2. If (X, x0) is a pointed, 0-connected type, then

‖Map∗(X,K(G, 1))‖0 ' Hom(π1X,G)

Proof. This follows fairly simply from Lemma 3.2.1, since

Map∗(X,K(G, 1)) 'Map∗(‖X‖1 , K(G, 1)) by Lemma 1.5.5

'Map∗(K(π1X, 1), K(G, 1)) by Lemma 2.5.1

' Hom(π1X,G) by Lemma 3.2.1

where we’ve been able to apply the uniqueness of Eilenberg-MacLane spaces since X

is 0-connected. But now, Hom(π1X,G) is a 0-type already, so this equivalence holds

for the truncation. We also note at this point that this equivalence essentially sends

a map f : X → K(G, 1) to the induced map π1f .

Lemma 3.3.3. If (X, x0) is a 0-connected pointed type (path-connected space), and

G is a 0-truncated (discrete) group, then πi(Map∗(X,K(G, 1)), f) is trivial for all

i ≥ 1.
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Proof. We have the following sequence of equivalences (omitting writing the base-

points)

ΩnMap∗(X,K(G, 1)) 'Map∗(S0,ΩnMap∗(X,K(G, 1))) as S0 ' 2

'Map∗(Sn,Map∗(X,K(G, 1))) by Lemma 2.3.1

'Map∗(Sn ∧X,K(G, 1)) by Lemma 2.4.1

'Map∗(Σ
nX,K(G, 1)) by Lemma 2.4.2.1

Now if n ≥ 2, we immediately see that

Map∗(Σ
nX,K(G, 1)) 'Map∗(Σ

n−2X,Ω2K(G, 1)) by Lemma 2.3.1

'Map∗(Σ
n−2X,1) by construction

' 1

Otherwise if n = 1, we use the fact that X is 0-connected and G is discrete

Map∗(ΣX,K(G, 1)) 'Map∗(X,ΩK(G, 1)) by Lemma 2.3.1

'Map∗(X,G) by construction

Since X is 0-connected, ‖x = x0‖−1 is inhabited for all x : X. But now since G is a set,

given any f : Map∗(X,G), the type (f(x) = f(x0)) is a (−1)-type. Moreover, f(x0) =

e (in fact f(x0) ≡ e). Hence the universal property of truncations (Lemma 1.5.5)

allows us to define a map
∏

x:X(f(x) = e). In particular, every map in Map∗(X,G)

is homotopic to the constant map x 7→ e. Hence Map∗(X,G) is contractible, and

equivalent to 1 by Lemma 1.5.1.

WritingMap(X, Y ; f) for Σg:Map(X,Y )(g = f) (i.e. the path component ofMap(X, Y )

containing f), we are now ready to prove

Theorem 3.3.4. Let (X, x0) be a pointed 0-connected type, G a 0-truncated (discrete)

group, and f : X → K(G, 1) a pointed map. Then

Map(X,K(G, 1); f) ' K(CG(imπ1f), 1)

Proof. Consider the map evx0 : Map(X,K(G, 1))→ K(G, 1) which sends g 7→ g(x0).

The fibre over base : K(G, 1) is fibevx0 (base) ≡ Σg:Map(X,K(G,1))(evx0(g) = base) '
Σg:Map(X,K(G,1))(g(x0) = base) ≡ Map∗(X,K(G, 1)). Giving the mapping spaces

basepoint f (in particular, let φ0 : f(x0) ≡ evx0(f) = base) and applying the long

exact sequence in homotopy of a fibration (Lemma 2.1.2) yields the exact sequence
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...

πk(Map∗(X,K(G, 1)), f) πk(Map(X,K(G, 1)), f) πk(K(G, 1))

π1(Map∗(X,K(G, 1)), f) π1(Map(X,K(G, 1)), f) π1(K(G, 1))

π0(Map∗(X,K(G, 1))) π0(Map(X,K(G, 1))) π0(K(G, 1))

Noting that πk(K(G, 1)) ' 1 for all k ≥ 2 and applying Lemma 3.3.3, we imme-

diately see by exactness that πk(Map(X,K(G, 1)), f) ' 1 for all k ≥ 2. It remains

to calculate π1(Map(X,K(G, 1)), f).

Applying Lemma 3.3.2 and substituting into the sequence above gives an exact

sequence

1→ π1(Map(X,K(G, 1)), f)→ G
∂−→ Hom(π1X,G)

Now, from Lemmas 2.1.2, 3.3.2, and the construction of K(G, 1), we see that ∂ sends

g 7→ (|loop(g)|0 : π1K(G, 1)) 7→ ((f, φ0 · loop(g)) : Map∗(X,K(G, 1))) 7→ (αg ◦ π1f :

Hom(π1X,G)), where αg : G → G is the map h 7→ g−1 � h � g. By exactness we

immediately see that π1(Map(X,K(G, 1)), f) ' ker(∂) ' {g : G | αg ◦ π1f = π1f} '
CG(imπ1f).

Since Map(X,K(G, 1)) is a 1-type by Lemma 1.5.2, so is Map(X,K(G, 1); f).

Hence we can appeal to the uniqueness of Eilenberg-MacLane spaces (Lemma 2.5.1)

to give the desired equivalence.

Corollary 3.3.4.1. Let G be a discrete group. Then

Map(K(G, 1), K(G, 1); id) ' K(Z(G), 1)

where Z(G) is the centre of G.

To end, we will mention that this result immediately says something about first

cohomology groups. It is outside the scope of this work to introduce cohomology,

but in his thesis [Cav15], Evan Cavallo mentions that we can define the ordinary

cohomology for n ≥ 0 via Hn(X) :≡ ‖Map(X,K(G, n))‖0. Our result therefore

immediately tells us about H1(X).
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