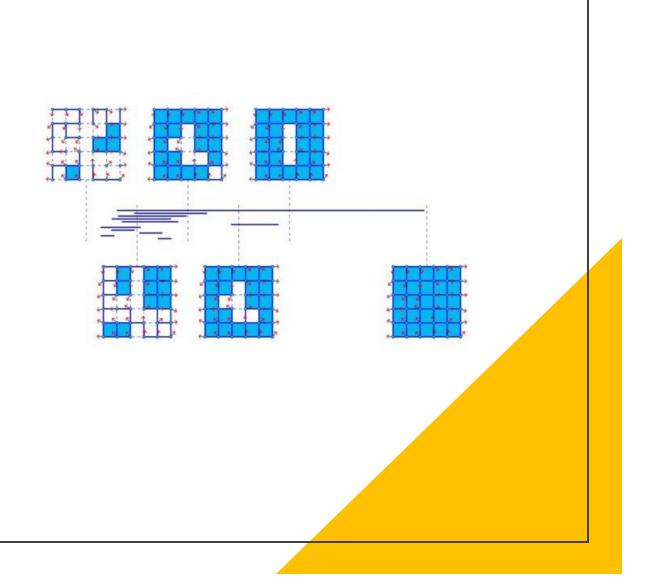
Quantitative Analysis of Phase Transitions Using Persistent Homology

Nicholas Sale, Jeffrey Giansiracusa, Biagio Lucini

SIAM Conference on Applied Algebraic Geometry 19th August 2021

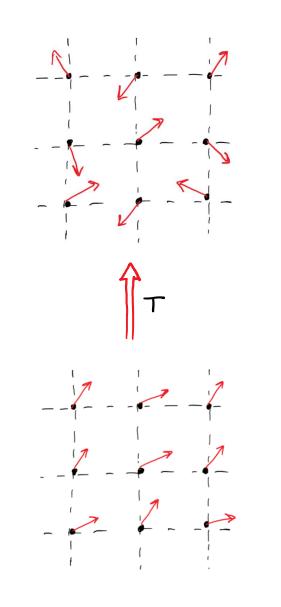


XY Models

- Finite 2-dimensional square lattice Λ
- Spin variable $\theta_i \in S'$ at each site $i \in \Lambda$
- Hamiltonian $\mathcal{H}: (s')^{\wedge} \longrightarrow \mathbb{R}$

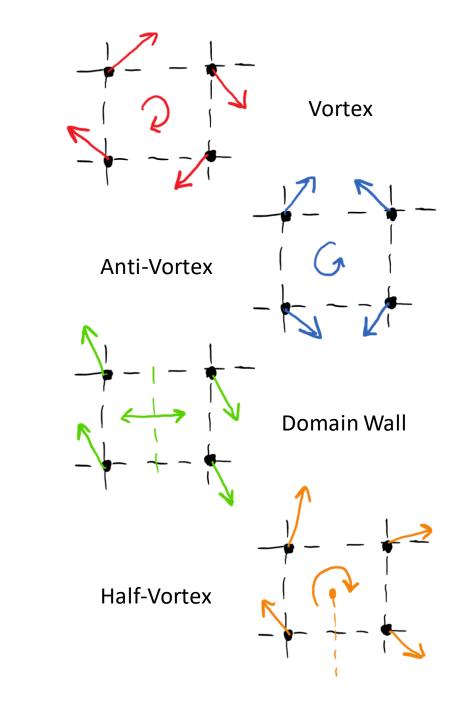
e.g.
$$\mathcal{H} = -\sum_{\langle ij \rangle} c_{os}(\theta_i - \theta_j)$$

- Canonical ensemble $\mathcal{P}_{r}(\underline{\theta}) \propto e^{-\frac{1}{r}H(\underline{\theta})}$
- Phase transition(s) as \top increases
- Typically analysed by measuring various correlations from Monte Carlo simulations



Why Persistent Homology?

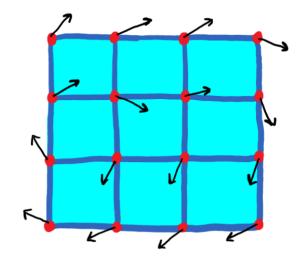
- Transitions driven by / introduce topological defects
- Arise from non-triviality of $\pi_{i}(S')$
- Different models have different defects
 - More in higher dimensions
- Want to detect these in a robust way
 - Stability is desirable



Filtration

- Sequence of cubical complexes
- We construct our filtration as increasing subcomplexes of "filled in" lattice
- Encode defects as 1-dimensional holes
 - Only need to look at H_1
 - Higher dimensional defects may require higher homology groups
- Straightforward to show stability via interleaving

$$f: \mathbb{R} \longrightarrow Cubical Complex$$
$$f(r) = f^{-1}((-\infty, r])$$



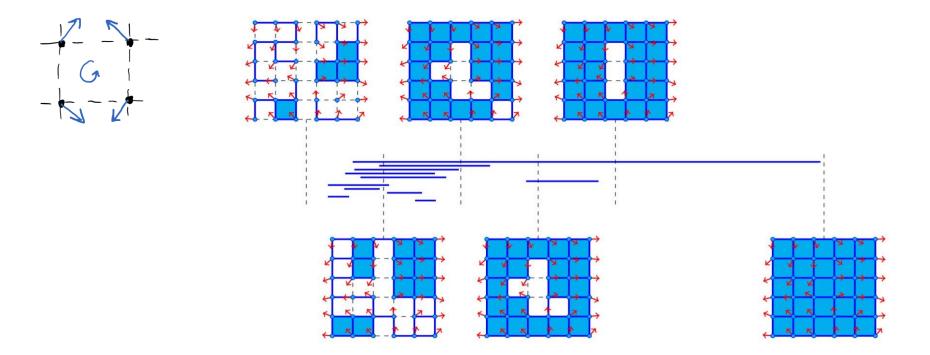
$$f(\bullet) = 0$$

$$f(\bullet) = |\Theta_i - \Theta_j|$$

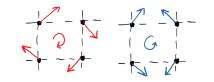
$$f(\bullet) = \max_{i \in \Box} \{|\Theta_i - \Theta_j|\}$$

Example

- Configuration with anti-vortex
- H, barcode shows one long bar and many short bars all born early on



Resulting Persistence Images



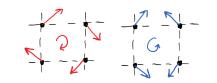
- Classical XY Model
 - Hamiltonian

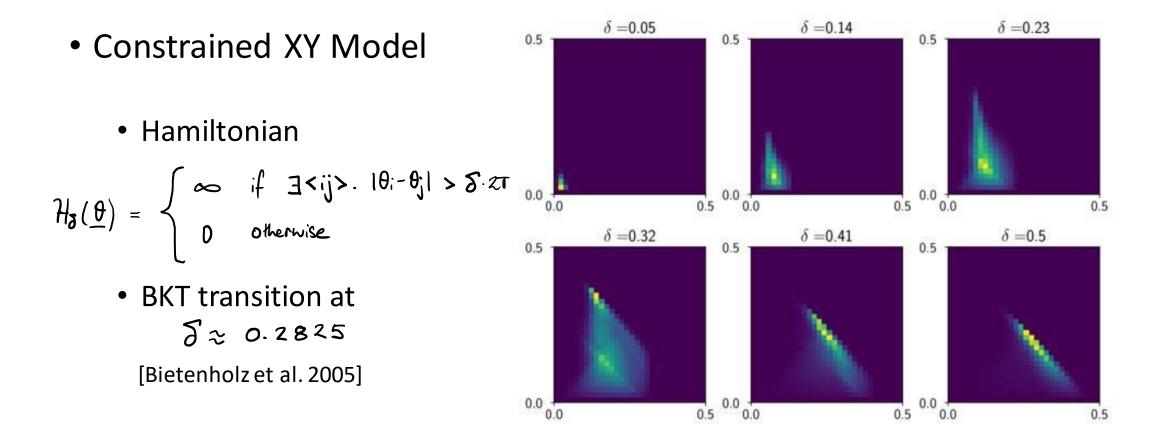
$$\mathcal{H}(\underline{\Theta}) = \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$$

• BKT transition at ⊤≈ 0.893 [Hasenbusch 2005]



Resulting Persistence Images





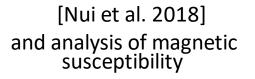
Resulting Persistence Images

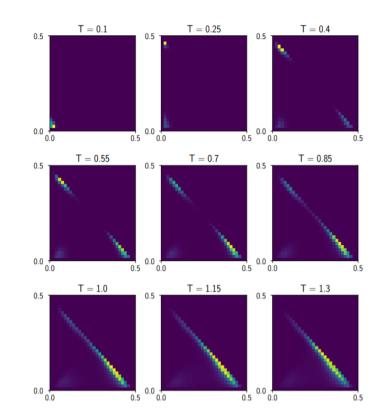
- Nematic XY Model
 - Hamiltonian ∆ = ◦.15

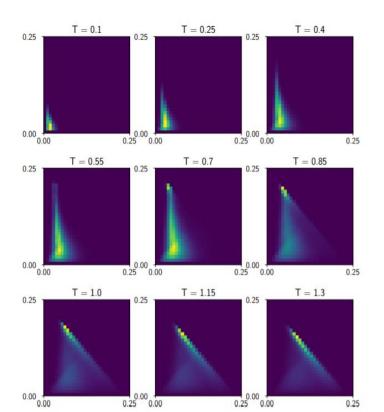
$$\mathcal{H}_{\Delta}(\underline{\theta}) = -\sum_{\langle ij \rangle} \begin{bmatrix} \Delta \cos(\theta_i - \theta_j) \\ + (1 - \Delta)\cos(2\theta_i - 2\theta_j) \\ \end{bmatrix}$$

- 2nd order transition at T≈ 0.331
- BKT transition at •

T≈ 0.795







Normal Filtration

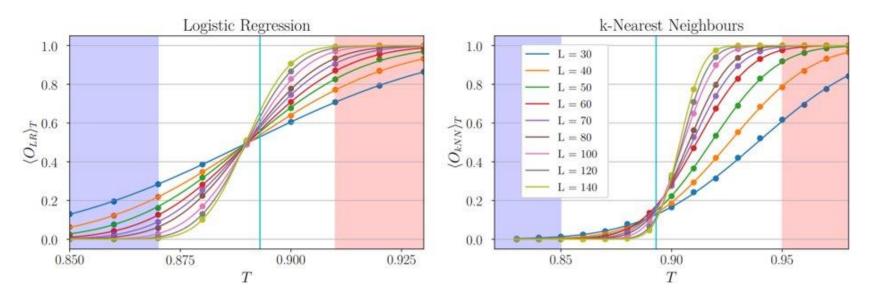
Nematic Filtration

Analysis Outline

- Like Cole, Loges and Shiu, we will use persistence images and binary classification models to learn the transition point
- Logistic regression and k-nearest neighbours
- Train and analyse much closer to the transition point
 - Making use of histogram reweighting for precise estimates
- Look for finite-size scaling behaviour to extrapolate critical temperatures and determine critical exponent of correlation length via curve collapse approach
- Bootstrap for error estimates

Observables

- Sample model over a range of temperatures
- Train classifier on persistence images away from T_c
- Look at the mean $\langle o \rangle$ and variance $\langle o^{\circ} \rangle \langle o \rangle^{2}$ of classifier output close to T_{c}
- Use histogram reweighting to interpolate



Finite-Size Scaling

- True phase transitions only occur in the continuum limit $\mathcal{L} \rightarrow \infty$
 - Divergence of correlation length δ , etc...
- On finite lattices we see a squashed version $\mathcal{S} \sim \mathcal{L}$
- Quantities of interest "squash" in a predictable way governed by the critical exponents and temperature of the transition

$$Q(L,t) = \left\{ \begin{array}{l} \mathcal{L}^{9_{\nu}} \hat{Q}(\mathcal{L}exp(-bt^{-\nu})) & \text{if BKT} \\ \mathcal{L}^{9_{\nu}} \hat{Q}(\mathcal{L}^{\frac{1}{\nu}}t) & \text{if } 2^{nd} \text{ order} \end{array} \right\} \quad \mathcal{L} = \frac{T - T_{c}}{T_{c}}$$

Finite-Size Scaling

 As we change lattice size, the peak temperature of the classification variance should fit

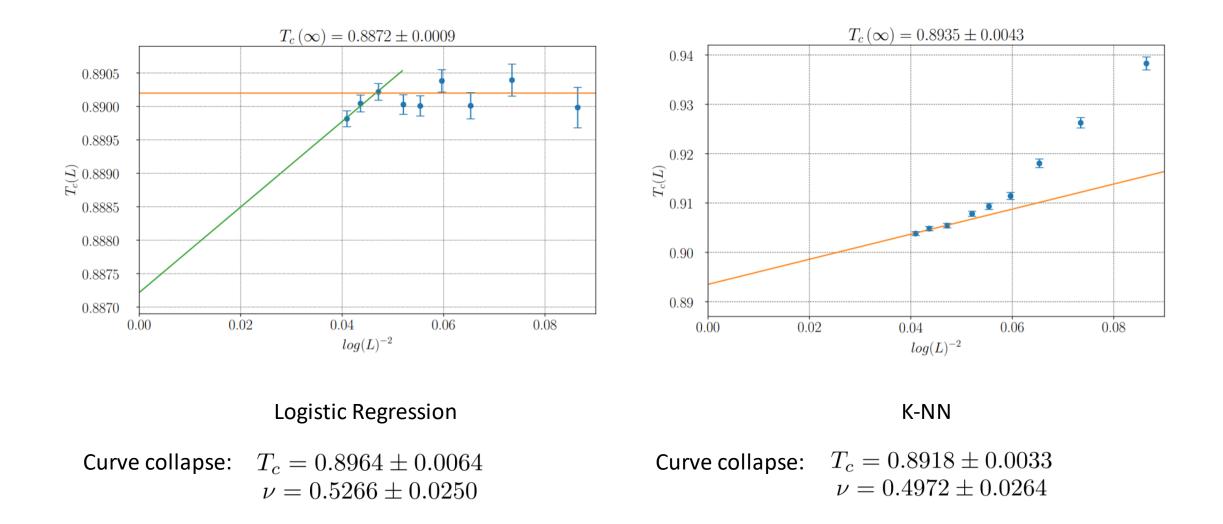
$$(T_c(L) - T_c) \propto \begin{cases} \log(L)^{-\frac{1}{\nu}} & \text{if BKT} \\ L^{-\frac{1}{\nu}} & \text{if 2}^{nd} \text{ order} \end{cases}$$

• We can also plot the variance curves for different lattice sizes against

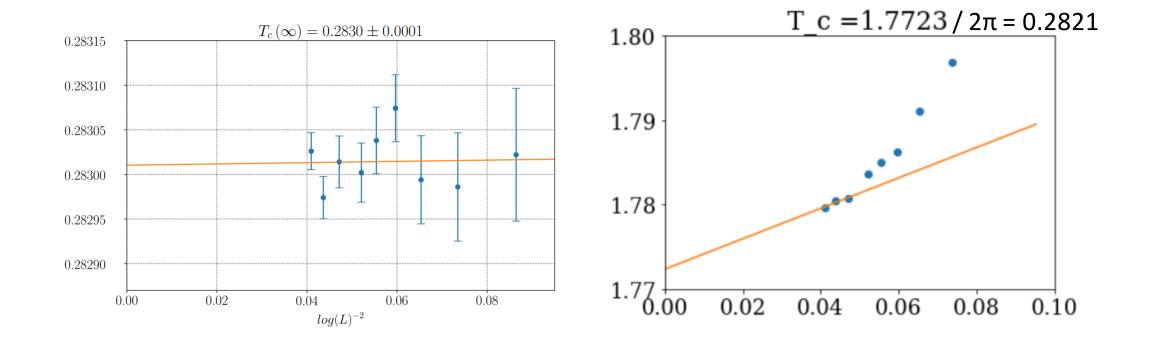
$$\mathcal{X} = \mathcal{L}\exp(-bt^{-\nu})$$
 or $\mathcal{L}^{\prime}t$

and optimise the unknown critical temperature / exponents to obtain the best fit (curve collapse)

Classical XY Model $T_c = 0.8929, v = 0.5$



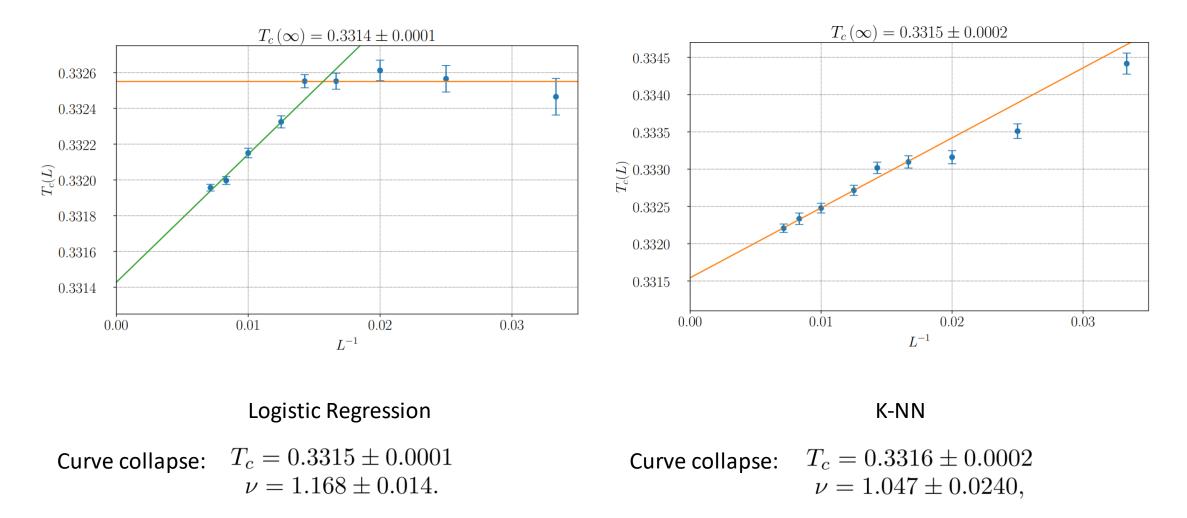
Constrained XY Model $\delta_c = 0.2825, v = 0.5$



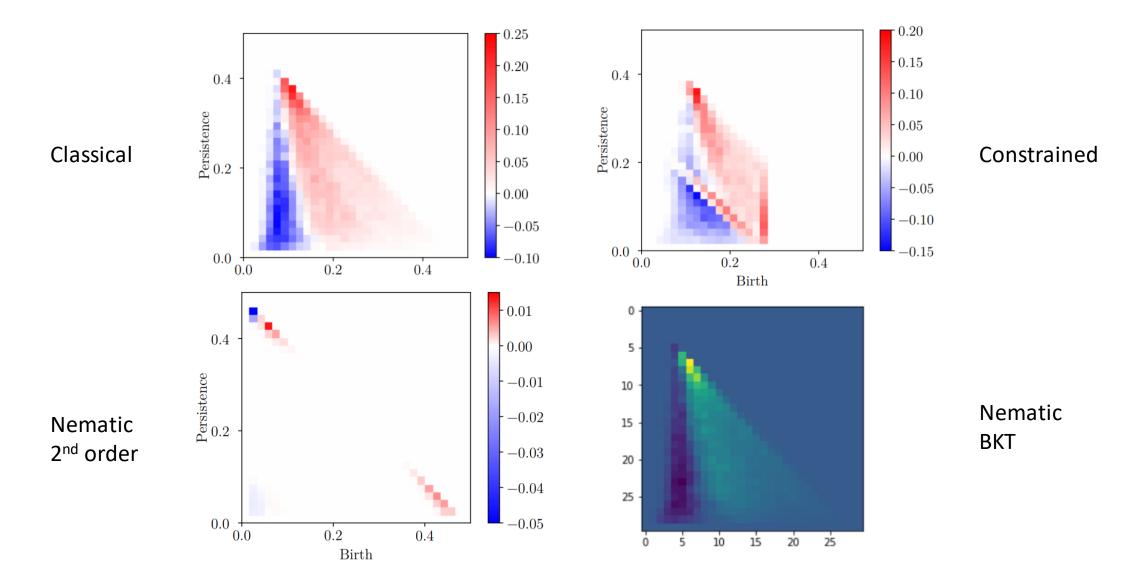
Logistic Regression

Curve collapse: $T_c = 0.2857 \pm 0.0014$ $\nu = 0.5186 \pm 0.0251$

Nematic XY Model – 2nd Order Transition $T_c = 0.3314$, v = 1



Logistic Regression Coefficients



Summary

- Introduced a new class of filtrations for looking at lattice spin models which yield stable persistence
- Able to successfully identify critical temperature and exponent of correlation length to reasonable accuracy using k-NN and finite-size scaling analysis for both BKT transitions and a 2nd order transition in the Ising universality class
- Found that different filtrations identify different phase transitions even within the same model

Future Work

- A lot!
- Extension to more complex models e.g. lattice gauge theories
- Universality of persistence?
- What do the different filtrations that have been introduced tell us? Compared to classical observables?
- Can we do without the classification step? Fréchet means/variances?