Fréchet Means for Distributions of Persistence Diagrams

(Turner, Mileyko, Mukherkee, Harer 2014)

Idea: compute means and variance wit wasserstein distances
$$d_{L^{2}}(X,Y) = \sqrt{\inf_{\phi:X\to Y} \sum_{z\in X} \|x-\phi(x)\|^{2}}$$
 Let $D_{L^{2}} = \{X \mid d_{L^{2}}(X,\phi) < \infty\}$. The Fréchet function of a probedishbothon P on $D_{L^{2}}$ is $F_{P}: D_{L^{2}} \to \mathbb{R}$ $Y \longmapsto \int_{D_{L^{2}}} d(X,Y) dp(X)$

The Fréchet Variance is inf $F_p(Y)$ and any $Y_{Y \in D_{L^2}}$ which achieves this is a Fréchet Mean.

For a finite Sample of diagrams $X_1, ..., X_m$ we can consider the distribution $P = \frac{1}{m} \sum_{i=1}^{n} J_{Xi}$ Then $F_{p}(Y) = \frac{1}{m} \sum_{i=1}^{m} d(X_{i}, Y)$ Computation of Fréchet means is well-studied for CAT(k) Spaces (~ Spaces with curvature bold above), but...

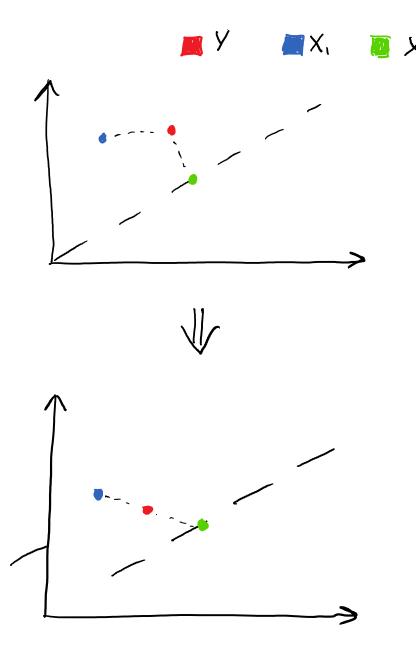
Proposition 2.4. \mathcal{D}_{L^2} is not in CAT(k) for any k > 0.

proof:
$$X,Y \in D_{22} \in CAT(R)$$
 with $d(X,Y) < \frac{\pi}{\sqrt{R}}$

$$\Rightarrow \exists \text{ unique geodesic from } X \text{ to } Y \text{. But}$$

Algorithm 1: Algorithm for computing the Fréchet mean Y from persistence diagrams X_1, \ldots, X_m .

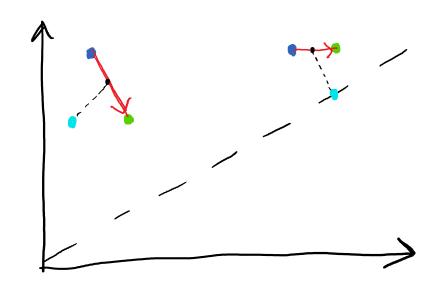
```
input: persistence diagrams \{X_1, \ldots, X_m\}
return: Fréchet mean \{Y\}
Draw i \sim \text{Uniform}(1,...,n); /* randomly draw a diagram
Initialize Y \leftarrow X_i; /* initialize Y
stop \leftarrow false;
repeat
   K = |Y|; /* the number of non-diagonal points in Y
                                                                                */
   for i=1,\ldots, m do
       (y^j, x_i^j) \leftarrow \operatorname{Hungarian}(Y, X_i); /* compute optimal pairings between
           each X_i and Y using the Hungarian algorithm
   for j=1,\ldots K do
       y^j \leftarrow \text{mean}_{i=1,\dots,m}(x_i^j) /* set each non-diagonal point in Y to
           the arithmetic mean of its pairings
   if Hungarian(Y, X_i) = (y_j, x_i^j) then stop \leftarrow true /* The points in the
       updated Y are optimal pairings w.r.t. each X_i
until stop=true;
return: Y
```



Theorem 2.5. The space of persistence diagrams \mathcal{D}_{L^2} with metric d given in (1) is a non-negatively curved Alexandrov space.

$$d'(Z,\gamma(t))^{2} \ge td'(Z,Y)^{2} + (1-t)d'(Z,X)^{2} - t(1-t)d'(X,Y)^{2}.$$

$$\forall \gamma \ (\chi \leadsto Y) \quad Z$$



proof idea: Let $\phi: X \to Y$ induce Y.

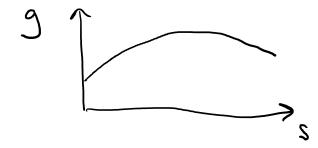
Construct paintings

(i) $Z \to X$ via $Z \xrightarrow{opt} Y(t) \to X$ (ii) $Z \to Y$ via $Z \xrightarrow{opt} X \xrightarrow{opt} X$ Then for even pt in Z (4) holds,

but the paintings might not be optimal, so its an inequality.

Proposition 2.6. If the support of ρ is bounded (as in has bounded diameter) then the corresponding Fréchet function is semiconcave.

In fact it's 2-concave — i.e. $\forall x$ unit speed $g = F_{p} \circ x(s) - S^{2}$ is concave



proof: follows from ineq. (4)

$$Z_{\gamma}(\gamma, \mathcal{N}) = \frac{\left(||\gamma(s), \mathcal{N}(t)|^{2} \right)}{|\gamma(s)|^{2}}$$

$$Cos^{-1} \left(||\gamma(s), \mathcal{N}(t)|^{2} \right)$$

$$S_{1}t \downarrow 0$$

$$Zst$$

$$\Sigma = Completion of $\hat{\Sigma}_y$ we Z_y .$$

Tangent cone
$$T_y = \frac{\sum \times Lo, \infty}{\sum \times \{o\}}$$

$$\langle (\gamma, s), (\gamma, t) \rangle = St \cos \langle (\gamma, \gamma, \gamma) \rangle$$

Definition 2.7 (Gradients and supporting vectors). Given an open set $\Omega \subset \mathcal{A}$ and a function $f: \Omega \to \mathbb{R}$ we denote by $\nabla_p f$ the gradient of a function f at a point $p \in \Omega$. $\nabla_p f$ is the vector $v \in T_p$ such that

- (i) $d_p f(x) \leq \langle v, x \rangle$ for all $x \in T_p$
- (ii) $d_p f(v) = \langle v, v \rangle$.

For a semiconcave f the gradient exists and is unique (Theorem 1.7 in [15]). We say $s \in T_p$ is a supporting vector of f at p if $d_p f(x) \le -\langle s, x \rangle$ for all $x \in T_p$. Note that $-\nabla_p f$ is a supporting vector if it exists in the tangent cone at p.

Lemma 2.8. (i) If s is a supporting vector then $||s|| \ge ||\nabla_p f||$.

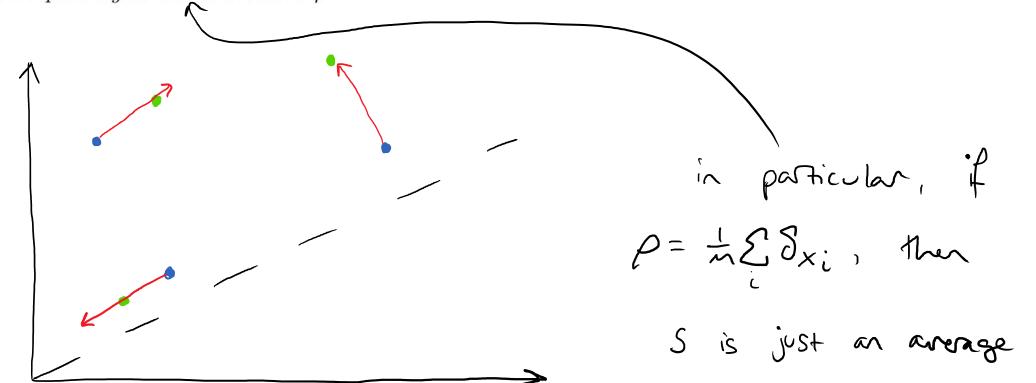
(ii) If p is local minimum of f and s is a supporting vector of f at p then s = 0.

(i)
$$0 \le \langle \nabla f_{+} s_{-} \rangle \nabla f_{+} s \rangle = \langle \nabla f_{-} \nabla f_{-} \rangle + 2 \langle \nabla f_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} s_{-} \rangle + \langle s_{-} s_$$

(ii)
$$d_pf(s) \ge 0$$
, so $-\langle s, s \rangle \ge d_pf(s) \ge 0$
 $\implies \langle s, s \rangle = 0 \implies s = 0$.

Proposition 2.9. Let $Y \in \mathcal{D}_{L^2}$. For each $X \in \mathcal{D}_{L^2}$ let $F_X : Z \mapsto d(X, Z)^2$.

- (i) If γ is a distance achieving geodesic from Y to X, then the tangent vector to γ at Y of length 2d(X,Y) is a supporting vector at Y for F_X .
- (ii) If s_X is a supporting vector at Y for the function F_X for each $X \in supp(\rho)$ then $s = \int s_X d\rho(X)$ is a supporting vector at Y of the Fréchet function F corresponding to the distribution ρ .



Lemma 3.1. If $W = \{w_i\}$ is a local minimum of the Fréchet function $F = \frac{1}{m} \sum_{j=1}^{m} F_j F$ then there is a unique optimal pairing from W to each of the X_j which we denote as ϕ_j and each w_i is the arithmetic mean of the points $\{\phi_j(w_i)\}_{j=1,2...m}$. Furthermore if w_k and w_l are off-diagonal points such that $||w_k - w_l|| = 0$ then $||\phi_j(w_k) - \phi_j(w_l)|| = 0$ for each j.

Let S_j be the vectors in TX_j tongent to the points S_j of length $d(X_j, Y)$. Then $Z_j Z_j S_j$ is a Support vector for F.

So we know $Z_j Z_j S_j = 0$. But now this implies each P_j of W is the mean of the points its paired with.

Proposition 3.2. Let X and Y be diagrams, each with only finitely many off diagonal points, such that there is a unique optimal pairing ϕ_X^Y between them and no off diagonal point in X matches the diagonal in Y. We further stipulate that if y_k and y_l are off-diagonal points with $||y_k - y_l|| = 0$ then $||(\phi_X^Y)^{-1}(y_k) - (\phi_X^Y)^{-1}(y_l)|| = 0$. There is some r > 0 such that for every $Z \in B(Y,r)$ there is a unique optimal pairing between X and Z and this optimal pairing is induced from the one from X to Y. By this we mean there is a unique optimal pairing ϕ_Y^Z from Y to Z and that the unique optimal pairing from X to Z is $\phi_Y^Z \circ \phi_Y^Y$.

Furthermore, if $X_1, X_2, ..., X_m$ and Y are diagrams with finitely many off-diagonal points such that there is a unique optimal pairing $\phi_{X_i}^Y$ between X_i and Y for each i with the same conditions as above, then there is some r > 0 such that for every $Z \in B(Y,r)$ there is a unique optimal pairing between each X_i and Z and this optimal pairing is induced by the one from X_i to Y.

Now note that the mean of $\{z_1, \ldots, z_m\}$ minimises $\{z_1, \ldots, z_m\}^2$.

So as long as the paintings Stary the same nearby, the mean is a local minima