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Topological Data Analysis is a relatively new field of mathematics, sitting somewhere between
mathematical data science and algebraic topology, popularised by Carlsson’s 2009 paper [1].
As a framework for applying the tools of algebraic topology and homological algebra to real
world data problems, TDA has had some successes in recent years, particularly in analysing
medical data and material sciences data (see for example [2, 3]). As a field of study, TDA has
re-framed and motivated a broad variety of interesting theoretical questions. For example, the
requirement for better computational tools has motivated the investigation of algorithms based
on discrete Morse theory [4]. The two main tools are persistent homology, introduced by Edels-
brunner, Letscher and Zomorodian [5], and the Mapper algorithm, introduced by Singh, Mémoli
and Carlsson [6]. | am primarily interested in the former.

Swansea University would be an excellent place to study TDA due to the mathematics de-
partment’s recent commitment to the Centre for Topological Data Analysis, and the dedicated
resources provided by the Computational Foundry.

2 Aims and Objectives:
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| have identified three different strands of investigation which | would be interested in pursuing.
These are not exhaustive.

Statistical approaches to TDA

At the Dragon Applied Topology Conference hosted in Swansea in September 2018, | had a con-
versation with Professor Wojciech Chachdlski (KTH), who was keen to express the necessity of
a statistical approach to TDA. In a statistical approach, we would consider data as being gener-
ated by some underlying distribution or process, and the inferences drawn from TDA methods
as estimators of topological quantities. This formulation is important for the uptake of topological
methods in the mainstream data science and statistics communities, but still has a variety of
open problems.

In his 2015 habilitation thesis [7], Bertrand Michel summarises the goals of a statistical ap-
proach to TDA as the following list of problems:

1. Proving consistency and studying the convergence rates of TDA methods.
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2. Providing confidence regions for topological features and discussing the significance of the
estimated topological quantities.

3. Selecting relevant scales at which the topological phenomenon should be considered, as a
function of observed data.

4. Dealing with outliers and providing robust methods for TDA.

| am particularly interested in problems 2 and 4 for the case of persistent homology, and in
general about when probabilistic guarantees can be made about topological inferences. | would
like to investigate these problems from a homology inference perspective, as in the line of work
stemming from Niyogi, Smale, Weinberger [8].

A closely-related problem, important for the uptake of TDA in the data science community,
is the adaptation of non-linear topological features for use in existing statistical and machine
learning methods. In particular, finding vectorisations of persistence diagrams which are stable
with respect to noise, efficient to compute and/or have other desirable properties. While there
are a number of frameworks which have been proposed and found successes, there is still scope
for improving these methods or for new approaches altogether. | would also like to understand
and characterise when a given representation might be better than another.

Potential objectives range from giving learning-theoretic bounds to developing feature maps,
and include:

» Proving stability results for different topological descriptors with respect to different metrics.

 Deriving lower bounds on the number of data samples required to effectively reconstruct the
homology of certain classes of spaces.

» Determining hardness of learning TDA-related problems in computational topology and geom-
etry.

» Constructing vectorisations of persistence barcodes with desirable properties.

» Characterising learning problems and datasets to determine an appropriate representation for
the output of persistent homology.

2.2 Algorithms and implementation of TDA tools

The viability of TDA as a toolbox for solving modern data science problems relies heavily on
the ability to efficiently construct complexes and compute persistent homology for potentially
very large datasets. While the computation of persistence barcodes given a filtered complex is
well-studied (see [9] for a summary), there are various ongoing lines of research into computing
filtered complexes from the original data. These include finding representative reductions of
the data, the development of new data structures, and the use of different types of complex for
specific types of data. There are also algorithmic considerations to the adaptation of barcodes for
use in statistics as mentioned in the previous section 2.1. Besides looking at specific examples,
these may even be generally amenable to information-theoretic arguments to give bounds on
computational complexity. These are things that | would be interested in investigating. Given
the variety of software packages for computing persistent homology with different underlying
algorithms, | would like to understand when a given algorithm is likely to be faster than another.

Potential objectives include:

» Developing ways to exploit known structure in data to reduce the size of complexes used in
persistent homology calculations.
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» Developing improved algorithms for the computation of popular feature maps for persistence
diagrams.

 Deriving bounds for the computational complexity of potential algorithms for using barcodes for
different learning problems.

» Characterising datasets to determine the most appropriate algorithm to apply.

Multiparameter persistence

One of the core theoretical problems in persistent homology is the stumbling block presented
by multiparameter persistent homology, when a filtration has two or more scale parameters.
This is due to the non-existence of any complete discrete invariants (like the barcode in the
1-dimensional case) [10]. | would be interested in studying algebraic approaches to obtaining
different descriptive invariants, each providing a partial picture of what's happening.

The objective would be to develop stable invariants and/or feature maps for multiparameter
persistent homology.

3 Literature Review:

3.1

3.2

Statistical approaches to TDA

As mentioned in section 2.1, Bertrand Michel’s thesis [7] provides a summary of the problems
of interest in a statistical approach to TDA, as well as recent contributions towards solving these
problems. In particular, he gives a theorem of Chazal et al. [11] which bounds the convergence
rate of persistence homology with respect to the bottleneck distance between diagrams for a
broad class of probability measures, but notes the difficulty of using this result to calculate con-
fidence regions. He also mentions the difficulty in providing tight lower bounds for convergence
when there is additive noise. Another contribution is the distance to measure (DTM) of Chazal et
al. [12], designed to improve the robustness of persistent homology in the presence of outliers.
Besides convergence results, it is shown how the DTM can be ’de-noised’, however this relies
on knowing in advance the distribution of the noise which means it's not immediately useful for
applications.

One of the more influential frameworks for featurising persistence modules is Peter Bubenik’s
persistence landscapes [13], provided with efficient algorithms for calculation in collaboration
with Pawet Dtotko [14]. This gives a direct mapping from persistence diagrams to a Banach
space, with all the nice statistical properties of Banach-valued random variables. More recently,
persistence landscapes have been adapted for use in the framework of Chevyrev, Nanda and
Oberhauser’s persistence paths approach [15] to feature maps. In this framework persistence
barcodes are first mapped to a path in a vector space of bounded variation via some embedding
(for example the embedding whose k" component at time ¢ is the k" landscape function evalu-
ated at t). Then the path is mapped to the tensor algebra of the vector space by integration. It’s
shown that the resulting map from barcodes to the tensor algebra is universal and characteristic.
Moreover, while the integration can be prohibitively costly in high dimensions, the map is ker-
nelised making it viable for kernel classifiers. However a tradeoff between stability, computability
and discriminative power emerges in the choice of path embedding. While a few examples with
different balances in these properties are given, it is not clear how to determine a good path
embedding to use for a given application.

Algorithms and implementation of TDA tools

In A roadmap for the computation of persistent homology [9], Nina Otter et al. introduce persis-
tent homology from a computational perspective, and benchmark the speed and memory usage
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of a subset of the open-source libraries for persistent homology computation available at the time
(2017). They conclude that there is no single best software for all datasets or complexes, but
suggest different software for different problems. These recommendations are based on the em-
pirical benchmarks, but looking at the performance on the different datasets, it is not necessarily
clear why certain implementations perform better on some datasets and worse on others.

Multiparameter persistence

In their recent paper Stratifying multiparameter persistent homology [16], Harrington et al. sum-
marise the approaches taken to study multiparameter persistent homology: via the rank invariant
originally proposed by Carlsson and Zomorodian in [10], which is a direct generalisation of the
barcode in the one-parameter case; by restricting the multiparemeter persistence module to a
line to obtain a one-parameter module; and by seeking to efficiently compute presentations of the
modules. They themselves investigate the r-parameter persistence module from the perspective
of N"-graded commutative algebra. They show that the Hilbert series and the associated primes
of a module provide invariants that describe components that persist forever in all directions
and in one given direction (respectively). This framework, covering all those others mentioned,
seems like a good setting to investigate algebraic invariants. However, while there are code
listings in the paper, there is scope to investigate the efficiency of the algorithms used.

In a very recent preprint [17], Oliver Vipond generalises Bubenik’s persistence landscapes
[13] to multiparameter persistence modules, which stably represent the multiparameter rank
invariant. These inherit the statistical properties of the original persistence landscapes.

4 Research Methodology:

The original formulation of persistent homology for (N, <)-indexed diagrams of finite dimensional
vector spaces [5] may be a good setting for developing algorithms, however it is likely that
Bubenik and Scott’s categorical formulation [18] will be an easier setting in which to work on
developing a statistical framework. As mentioned in section 3.3, the context of N"-graded com-
mutative algebra used by Harrington et al. [16] seems to be a useful setting for investigating
multiparameter persistence.

Investigation of the learning-theoretic aspects of TDA could naturally be approached via the
PAC-learning framework introduced by Valiant [19]. This is a well-studied approach to defining
the learnability of different classes of concepts. Reducing homological learning problems to more
general learning problems may provide immediate results about the sample complexity or time
complexity of potential algorithms.

Any invariants or vectorisations constructed could be evaluated for their discriminative power
by experiment on datasets. Similarly, the time and memory requirements of any algorithms
developed could be recorded when run on the standard datasets provided by Nina Otter [9].

5 Expected Outcomes:

By the end of this project, | expect to have contributed new proofs to the theory of persistent ho-
mology and its application to data science. Besides developing our understanding of these meth-
ods, | expect to provide constructions which have immediate practical use in data science ap-
plications, as well as results from experimental evaluation of these. These contributions should
play a part in influencing the uptake of TDA as a reliable toolbox in the wider data science com-
munity.
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