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Topologically ordered phases of matter display a number of unique characteristics, including ground states that can be interpreted as patterns of closed strings. In this paper, we consider the problem of
detecting and distinguishing closed strings in Ising spin configurations sampled from the classical Zs gauge theory. We address this using the framewaork of persistent homology, which computes the
size and frequency of general loop structures in spin configurations via the formation of geometric complexes. Implemented numerically on finite-size lattices, we show that the first Betti number of the
Vietoris-Rips complexes achieves a high density at low temperatures in the Zs gauge theory. In addition, it displays a clear signal at the finite-temperature deconfinement transition of the three-
dimensional theory. We argue that persistent homology should be capable of interpreting prominent loop structures that occur in a variety of systems, making it an useful tool in theoretical and
experimental searches for topological order.



Zi5 Gauge Theory

e Square lattice (here 2D or 3D)
e Binary variable in {-1, 1} on each link
e Gauge transformations flip the variables on edges around 1 vertex
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Ground States and Loops

* Minimal energy obtained if all plaguettes have an even number of
occupied links

* In this case, occupied links form loops (in the dual lattice)
* Achieved via gauge transformations of unoccupied configuration
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Visons

* Excitations come from an odd number of occupied links

* These form a pair of visons

* Gauge transformations may pull these apart

to form an open string of occupied links




Phase Transition

* In 2D there is no phase transition

* In 3D there is a deconfinement transition
* Low temperature (high K)
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* High temperature (low K)

(I1+t0) = "




(Persistent) Homology

* Given point cloud of occupied links
* B, of the Vietoris-Rips complex with
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captures all loops of occupied sites
except those around a single vertex

e Persistence can tell us about the size
of the loops
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Experimental Setup

e Over a range of temperatures (i.e. values of K) and lattice sizes

* Obtain 2000 configurations via Metropolis sampling

* Cluster updates with random gauge transformations
* Spin flips (accepted with probability based on energy change)
* Periodic boundary conditions

* Point cloud of occupied links with distance between points

D
d(z,y) = J Y min [yo — 2a, (Ta — £1) + (b2 — ya)]’

* Record the average B, of the configs for each temperature



Results

* Higher temperatures -> more visons -> lower B,
 Larger lattice size -> larger loops -> less loops
e Sharp indicator of phase transition in 3D
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Discussion

e Approach not gauge-invariant

* Generalizable to systems where local symmetry not known explicitly
* Would this be an issue for larger gauge groups?

* Scaling
* Notes a power law scaling for B, at temperatures above critical point
 Straightforward step to produce estimate of critical temperature



