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XY Models

* Finite 2-dimensional square lattice A

e Spin variable B. ¢ S’ ateachsite L e A
e Hamiltonian H: (sh" — R
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e Canonical ensemble F-(8) « e
* Phase transition(s) as T increases

e Typically analysed by measuring various
correlations from Monte Carlo simulations
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Why Persistent Homology? |
o f

* Transitions driven by / introduce topological /' \ _
defects

. o ' Anti-Vortex

* Arise from non-triviality of T (S') _ ‘,_\s._ -
{

* Different models have different defects L

* More in higher dimensions o T

. ( 1 Domain Wall
* Want to detect these in a robust way % .
I

 Stability is desirable
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Filtration

* Sequence of cubical complexes

* We construct our filtration as increasing
subcomplexes of "filled in" lattice

* Encode defects as 1-dimensional holes

* Only need to look at H,

* Higher dimensional defects may require
higher homology groups ]f( o) = 0O

 Straightforward to show stability via
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Example

* Configuration with anti-vortex
* H, barcode shows one long bar and many short bars all born early on
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Resulting Persistence Images =2 .°.

e Classical XY Model

e Hamiltonian

/H(Q\ = Z.Coslb‘;—ﬁ‘\')\
<§\')>

T =0.95 T =125 T =155

e BKT transition at
T ~ 0.%43

[Hasenbusch 2005]




Resulting Persistence Images -2, .°.

8 =0.05 ) =0.14 d =0.23

e Constrained XY Model b

e Hamiltonian

oo if <> 16:;-8;| > §-zr
Hs(8) = {

0D otheruiSe.

e BKT transition at
D~ 0.2825

[Bietenholz et al. 2005]




Resulting Persistence Images - =, ©. .+

e Nematic XY Model

e Hamiltonian A= o0.15

(0) =
/HA 2 _ Z A Co5(8:-§))
+ (l-A\Co&(Ze\“ZQJ)

ap
e 2nd grder transition
at T & 0-33|

* BKT transition at _
T ~ O' 70' 5 0.0 . os %o . 05 200 . 05 0.00

0.00
0.00 025 0.0

[Nui et al. 2018]

and analysis of magnetic Normal Filtration Nematic Filtration
susceptibility



Analysis Outline

* Like Cole, Loges and Shiu, we will use persistence images and binary
classification models to learn the transition point

* Logistic regression and k-nearest neighbours

* Train and analyse much closer to the transition point
* Making use of histogram reweighting for precise estimates

* Look for finite-size scaling behaviour to extrapolate critical
temperatures and determine critical exponent of correlation length
via curve collapse approach

* Bootstrap for error estimates



Observables

 Sample model over a range of temperatures
* Train classifier on persistence images away from Tc
* Look at the mean <o) and variance <>~ of classifier output close to T.

e Use histogram reweighting to interpolate

Logistic Regression k-Nearest Neighbours




Finite-Size Scaling

* True phase transitions only occur in the continuum limit 4 — oo
* Divergence of correlation length §, etc...

* On finite lattices we see a squashed version § ~ 4

* Quantities of interest "squash" in a predictable way governed by the
critical exponents and temperature of the transition

X oA —v .
®(L,t) :f LV Q( Lexp(~bE ")) ifBKT A

) ¢ -
2 Q (Z"t ) if 2" order B




Finite-Size Scaling

* As we change latticesize, the peak temperature of the classification
variance should fit

(Toe) - T2) < loq (L) ¥ if BKT A
) Iz if 2" order

* We can also plot the variance curves for different lattice sizes against

¥ = Ldep-bt™) or i

and optimise the unknown critical temperature / exponents to obtain the
best fit (curve collapse)



Classical XY Model| t-os09, v-0s

T. (o) = 0.8872 £ 0.0009

T, (00) = 0.8935 + 0.0043
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Logistic Regression K-NN

Curve collapse: 7. = 0.8964 + 0.0064 Curve collapse: T, = 0.8918 £+ 0.0033
v = 0.5266 £+ 0.0250 v = 0.4972 + 0.0264



Constrained XY Mode| s.=02s2s, v=0s

— T, (00) = 0.2830 + 0.0001 1 80 T ¢c=1.7723/2n=0.2821
L]
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Logistic Regression

Curve collapse: 1. = 0.2857 +0.0014
v =0.5186 £+ 0.0251



Nematic XY Model — 2nd Order Transition

T.=0.3314, v=1
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Logistic Regression

Curve collapse: 1. = 0.3315 £ 0.0001

v = 1.168 = 0.014.

S)
Eﬂ[\'

T, (00) = 0.3315 & 0.0002

0.3340

0.3335 1

0.3330 1

0.3325 1

0.3315 1

Curve collapse:

0.01 0.02

K-NN

1. = 0.3316 £ 0.0002
v = 1.047 £ 0.0240,




Logistic Regression Coefficients
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Summary

* Introduced a new class of filtrations for looking at lattice spin models
which yield stable persistence

* Able to successfully identify critical temperature and exponent of
correlation length to reasonable accuracy using k-NN and finite-size
scaling analysis for both BKT transitions and a 2" order transition in
the Ising universality class

* Found that different filtrations identify different phase transitions
even within the same model



Future Work

* Alotl!
e Extension to more complex models e.g. lattice gauge theories

* Universality of persistence?

* What do the different filtrations that have been introduced tell us?
Compared to classical observables?

* Can we do without the classification step? Fréchet means/variances?



