Fréechet Means for Distributions of Persistence Diagrams
(Turner, Mileyko, Mukherkee, Harer 2014)
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Proposition 2.4. D> is not in CAT(k) for any k > 0.
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Algorithm 1: Algorithm for computing the Fréchet mean Y from persistence
diagrams Xq,..., X,,. / A
P
input : persistence diagrams {X;,..., X,,} 6~~~ ‘ ~
\ -~
return: Fréchet mean {Y'} A
Draw ¢ ~ Uniform(1,...,n); /* randomly draw a diagram */
Initialize Y <« X;; /* initialize Y */ / ~
(d
stop « false ;
repeat
K =|Y|; /* the number of non-diagonal points in Y */ I
for i=1,..., m do
(y/,2!) « Hungarian(Y, X;) ; /* compute optimal pairings between
B each X; and Y using the Hungarian algorithm */
for j=1,... K do /l\
Y — mean;—, ., (z]) /* set each non-diagonal point in Y to
B the arithmetic mean of its pairings */ /
if Hungarian(Y, X;) = (yj,;;:{) then stop + true /* The points in the » /
updated Y are optimal pairings w.r.t. each X; */ T ®

until stop=true; ' 7‘

return: Y
] -




Theorem 2.5. The space of persistence diagrams Dy2 with metric d given in (1) is
a non-negatively curved Alexandrov space.
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Proposition 2.6. If the support of p is bounded (as in has bounded diameter) then
the corresponding Fréchet function is semiconcave.
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Definition 2.7 (Gradients and supporting vectors). Given an open set 2 C A and
a function f : 2 — R we denote by V,f the gradient of a function f at a point
p € Q. V,f is the vector v € T}, such that

(i) dpf(z) < (v,z) forall z € T,
(ii) dpf(v) = (v,v).

For a semiconcave f the gradient exists and is unique (Theorem 1.7 in [15]). We say
s € T), is a supporting vector of f at p if d,,f(x) < —(s,z) for all x € T),. Note that
—V, [ is a supporting vector if it exists in the tangent cone at p.

Lemma 2.8. (1) If s is a supporting vector then ||s|| > ||V, f]l.
(ii) If p is local minimum of f and s is a supporting vector of f at p then s = 0.
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Proposition 2.9. Let Y € D;2. For each X € Dy2 let Fx : Z — d(X, Z)?.

(i) If v is a distance achieving geodesic from Y to X, then the tangent vector
toy at'Y of length 2d(X,Y) is a supporting vector at'Y for Fx.
(ii) If sx is a supporting vector at'Y for the function Fx for each X € supp(p)

then s = [ sxdp(X) is a supporting vector at Y of the Fréchet function F
corresponding to the distribution p.
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Lemma 3.1. If W = {w;} is a local minimum of the Fréchet function F =

1 m ) - ) - : s : o e
) A F; F' then there is a unique optimal pairing from W to each of the X; which

we denote as ¢; and each w; is the arithmetic mean of the points {¢j(wi)}j=1.2..m-
Furthermore if wy and w; are off-diagonal points such that |wr — w;|| = 0 then

¢ (wk) — @j(wi)|| =0 for each j.
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Proposition 3.2. Let X and Y be diagrams, each with only finitely many off diag-
onal points, such that there is a unique optimal pairing cb}/( between them and no off
diagonal point in X matches the diagonal in' Y. We further stipulate that if y;. and
y are off-diagonal points with |lyr. — yi|| = 0 then ||(%) () — (¢X) ' (w)|l = 0.
There is some r > 0 such that for every Z € B(Y,r) there is a unique optimal
pairing between X and Z and this optimal pairing is induced from the one from X
to Y. By this we mean there is a unique optimal pairing (/))Z, fromY to Z and that
the unique optimal pairing from X to Z is d),Z/ o ¢)§é.

Furthermore, if X1,Xo,..., X, and 'Y are diagrams with finitely many off-diagonal
points such that there is a unique optimal pairing gb}/(, between X; and Y for each
1 with the same conditions as above, then there is some r > 0 such that for every
Z € B(Y,r) there is a unique optimal pairing between each X; and Z and this
optimal pairing is induced by the one from X; to Y.
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