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Spectral Graph Theory

Consider a graph G = (V,E)
1 if(vi,fvj) cFk

0 otherwise

Definition: Adjacency matrix — A; ; = {

deg(v;) ifi=7j
Definition: Graph Laplacian  L;; =< —1 if (v;,v;) € E

0 otherwise

Note that deg(vi) =>_; 4i; , and we can also write L = D — Awhere D = diag({v}ev)



Properties of the Laplacian

Consider f:V — R as avectorin R® with components f;

Proposition:  f'Lf = 32 ,0er(fi = fi)?

Corollary: L is positive semi-definite, so all its eigenvalues are non-negative

Since L is symmetric, the spectral theorem also tells us it has n linearly-
independent eigenvectors with eigenvalues 0 < A\ <X <... <\,

Proposition:  dim(kerL) = By (# of connected components)

Hence G is connected iff X > 0. In fact, \; gives a “measure of connectedness”



Example: What can the other eigenvalues tell us?

Definition: Cheeger constant hG) = min |0A]

(also Isoperimetric ratio) ACV, |A|<$|V] 4]

where 90A={(v,w)eE|ve A, w¢ A}

Theorem: (Cheeger-Alon-Milman) Let d,,., be
the maximum degree of any vertex. Then

% S h(G) S V 2dmax)\2




Extension to Simplicial Complexes

Consider a chain complex (C;, 8;)

Definition: k-th Combinatorial Laplacian Ly = 0} 0, + 0110},

Note that when k£ = 0 we obtain the same definition as before
K

4

Proposition:  dim(kerLy) = B

We can also relate the combinatorial
Laplacian to random walks on simplicial
complexes (see Random walks on simplicial
complexes and the normalized Hodge 1-Laplacian by Shaub et al.)



Persistent Spectral Theory

Idea: PerSpect (Persistent spectral based machine learning (PerSpect ML) for drug design)

K'CK*C...CK" filtration of a simplicial complex
Ly, L2,..., L} k-th combinatorial Laplacians

|

O, SO S =L L D A, S = A, L) spectral features



Biomolecular Topological Modeling

Model: Element-specific (ES) modelling

Given the spatial configuration of a molecule,
consider separate point clouds for each element




Example: Buckyball C,
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Modelling Interactions

In drug design we want to look at the interaction between
two molecules: a protein and a ligand. In particular, we
might want to predict the binding affinity

Take element point clouds Rp, Ry, from the protein and ligand

Definition: ES interactive distance

|z —y|| ifz € Rp,ye Ryory€ Rp,z € Ry,
d(z,y) =

00 otherwise

Definition: ES interactive electrostatic distance

o) ifz€Rp,yc Ryory € Rp,e € Ry

(1+ exp( B

dE‘(m? y) = {

00 otherwise



Predicting Binding Affinity Given protein P and ligand L

We have 4 protein element point clouds  And 9 ligand element point clouds
C,NO,S C,N,O,S,P FCIBrl

Giving 4*9 = 36 Vietoris-Rips filtrations ~ VRq(Cp UCL), VR;(Cp U Ny), ...

11*250*36 = 99,000 features computed (11 features at 250 filtration values)
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Similarly, 11*100*50 = 55,000 features are computed using dg



Spectral Features

o0k Wb~

Betti 0 /. Laplacian graph energy

Betti 1 8. Generalized mean graph energy
Mean 9. Spectral moment (second order)
Standard deviation 10. Quasi-Wiener index

Maximum 11. Spanning tree number

Minimum

(G) — Zz Ai GME(G) = >, [N — 5\‘ SM(G) = Zz()‘z)k

A _ 1
QWI(G) = ¥, 22 ST(G) = 19(15zors [o M)



Performance

Trained using Gradient Boost Trees on data from the PDBbind-2007,
PDBbind-2013 and PDBbind-2016 databases
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Similar to ideas in the presentation Persistent
harmonic forms by André Lieutier

Persistent Laplacians (https://project.inria.fr/qudhiffiles/2014/10/Per

sistent-Harmonic-Forms.pdf)

Idea: (Persistent spectral graph) Consider a filtration of chain complexes

ot 1 3; i % 11 1
Cly, =% ¢ = . & g & g & g = o,
911 % 93 93 h 9%
N . N " N N N
941 9 93 03 o o
C2,; _— C; = - = 0 = (f = G = 4
o2 % % % % %
TR TER - : —t+p —t+p
Definition: p-persistent k-th Laplacian t+p _ T t\T ot
elinfion.  p-persiste aplacia Ly = 04 11(0p41)" + (Or)" O
—t+p
where AP ={cecC;™”|docCt_} 0, =8| g

Proposition: dim(kerL.?) = 8.
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Questions

e \What level of stability do we have for these spectral features?

e If none, how much do we actually miss it in applications like these?

e Aren’t these spectral features very expensive to compute lots of times? What
methods for computing these faster for filtrations might there be>



Image URLs

e https://courses.lumenlearning.com/introchem/chapter/molecules/

e https://www.creative-proteomics.com/services/protein-ligand-binding-site-prediction-service.htm
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